
© 2020 Arm Limited (or its affiliates)

Chris Jones (slides from MPG)
2020/11/03

Writing Constant-
Time Code

What, why and how?



2 © 2020 Arm Limited (or its affiliates)

Side-Channel Attacks
• Constant-time code is a countermeasure

• “Attack based on information gained (‘leaked’) from the practical 
implementation of a system”

– Can completely break real world encryption

• Many types exist
– Timing
– Cache
– Branch prediction
– Many more (power, fault, etc...)



3 © 2020 Arm Limited (or its affiliates)

A Simple Example
• Checking that a MAC (for example) matches an expected value:

• This is vulnerable to a number of side-channel attacks

int compare(uint8_t *a, uint8_t *b, size_t len)
{

for (size_t i = 0; i < len; i++)
if (a[i] != b[i])

return -1;
return 0;

}



4 © 2020 Arm Limited (or its affiliates)

A Simple Example
• Checking that a MAC (for example) matches an expected value:

• This is vulnerable to a number of side-channel attacks

int compare(uint8_t *a, uint8_t *b, size_t len)
{

for (size_t i = 0; i < len; i++)
if (a[i] != b[i])

return -1;
return 0;

}



5 © 2020 Arm Limited (or its affiliates)

What Can Be Done?
• Use constant-time code to eliminate this class of vulnerability

• Execution time cannot depend on secret values

• Follow the golden rules:
– No branches depending on secret data
– No memory access depending on secret data
– No variable-time instruction executed on secret data

• Limits: physical side-channels, faults, readability



6 © 2020 Arm Limited (or its affiliates)

Fixing Our Example

int compare(uint8_t *a, uint8_t *b, size_t len)
{

for (size_t i = 0; i < len; i++)
if (a[i] != b[i])

return -1;
return 0;

}



7 © 2020 Arm Limited (or its affiliates)

Fixing Our Example – Removing Branches

int compare(uint8_t *a, uint8_t *b, size_t len)
{

for (size_t i = 0; i < len; i++)
if (a[i] != b[i])

return -1;
return 0;

}



8 © 2020 Arm Limited (or its affiliates)

Fixing Our Example – Removing Branches

int compare(uint8_t *a, uint8_t *b, size_t len)
{

char diff = 0;
for (size_t i = 0; i < len; i++)

diff |= a[i] ^ b[i];
return diff;

}



9 © 2020 Arm Limited (or its affiliates)

Example #2 – Table Lookup
• Seemingly a constant time instruction - O(1)

• Vulnerable to a cache attack!

• Violates rule #2 (No memory access depending on secret data)

u32 lookup(u32 *t, u32 l, u32 secret_i) {
return t[secret_i];

}



10 © 2020 Arm Limited (or its affiliates)

Example #2 – Table Lookup
• Seemingly a constant time instruction - O(1)

• Vulnerable to a cache attack!

• Violates rule #2 (No memory access depending on secret data)

u32 lookup(u32 *t, u32 l, u32 secret_i) {
u32 r = t[0];
for (u32 j = 1; j < l; j++) {

r = choose(r, t[j], eq(secret_i, j));
}
return r;

}



11 © 2020 Arm Limited (or its affiliates)

Real World Examples
• (1996) “Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems”

• (2003) “Remote Timing Attacks Are Practical”

• (2011) “Remote Timing Attacks Are Still Practical”

• (2013) Lucky 13

• (2018) Spectre & Meltdown



12 © 2020 Arm Limited (or its affiliates)

Conclusion
• Constant-time code can be used to defend against a variety of side-

channel attacks

• Constant-time code is not easy to write - prone to both human and 
compiler error

• Promising techniques to automate testing & writing
– Still needs some improvements & widespread adoption



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci谢谢ありがとう

Gracias
Kiitos감사합니다
धन्यवाद

شكرًا
 ধন্য�বা�দ 

תודה


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

