Mbed TLS workshop —
PSA Cryptography API

-Gilles-Peskine

Platform Security Architecture

A framework for building secure devices — openly published.

Analyze Architect Implement Certify
a¥uln
A A— < -
L= 01001 g @
S =C -
-l ALY
Threat models Hardware & firmware Firmware Independently
& security analyses architect specifications source code tested

psacertified™

© 2019 Arm Limited

arm

PSA Developer APIs — making security easy to use

Developers

PSA RoT

Crypto Attestation

PSA Developer APls

Trusted Secure
boot Storage

Example security functions ‘ architecture

psacertified™

functional API

© 2020 Arm Limited

A consistent set of
APIs simplifies
developer access to
security functions
across the industry

arm

Balancing

ease of use VS flexibility
* Cryptography is hard to use, easy to misuse * Need low-level primitives to implement TLS,
 Functional tests don’t tell you your code is IPsec, WPA, LoRaWAN, Bluetooth, GSM, ZigBee,
insecure
* Make the most obvious path secure * Need to do dodgy-but-ok-in-this-context things
- But please do read the documentation! sometimes
* The best crypto APl is no API - Deprecated crypto is still in use: MD5 (TLS

1.1), CBC(TLS 1.1), unauthenticated ciphers

- “If you're typing the letters A-E-S into your
(storage), RSA PKCS#1 v1.5 (TLS 1.2), 3DES

code you’'re doing it wrong” — Thomas Ptacek

- Secure storage: (banking), ...
f = open("/ext/myfile"); read(f); - Key derivation in the real world is a mess

- Secure communication: TLSSocket sock; - A key should only be used for one purpose...
sock.connect("example.com", 443); except when protocols dictate otherwise

But how does this work under the hood?

4 © 2020 Arm Limited a r m

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2009/july/if-youre-typing-the-letters-a-e-s-into-your-code-youre-doing-it-wrong/

Use an existing crypto API?

Evolve Mbed TLS?

- Would be hard to add support for opaque keys
- Too flexible: gives you a lot of rope to hang yourself

- Very transparent data structures with visible pointers
— Cumbersome to plug in hardware acceleration or keystore isolation
— Relies heavily on malloc (so not suitable for e.g. MISRA)

cryptlib? OpenSSL/BoringSSL/LibreSSL/...?

- Too big, not easy to use

NaCl/libsodium?

- Not flexible enough: only includes black-box primitives

Any APl in C++/Rust/Go/...?

- We need C, the common denominator

© 2020 Arm Limited

arm

https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://nacl.cr.yp.to/
https://download.libsodium.org/doc/

What about PKCS#117?

PKCS#11 = Cryptoki: standard interface for smartcards

The elephant in the room!

6 © 2020 Arm Limited

Not so easy to use

Example: sign with existing key

/* Discover the key */
CK_ATTRIBUTE label attribute =
{CKA_LABEL, "Fred",
strlen("Fred")};
C_FindObjectsInit(hSession,
&label attribute, 1);
C_FindObjects(hSession,
&hKey, 1, &count);

/* Sign with the key */
CK_MECHANISM mechanism =
{CKM_ECDSA SHA256, NULL_PTR,

0};

C _SignInit(hSession,
&mechanism, hKey);

C_Sign(hSession, msg, msg len,
&sig, &sig len);

Not the right shape

Big, we’d have to define a
subset

Key discovery is complex
Lots and lots of parsing

Standard compliance is poor
in practice

Not good at access control
- Designed for a single
user

arm

Some API design guidelines

Make it easy to use, hard to misuse
- KISbntS: keep it simple, (but not too) stupid

Uniform interface to memory buffers
- Explicit sizes throughout
« You don’t need to understand the algorithm to know how much memory to allocate

Cryptographic agility
- Select a key type and mode during key creation
- Call sequence, buffer size calculations are uniform across algorithms of the same kind

“Security agility”
- Single API, multiple isolation levels under the hood

7 © 2020 Arm Limited a r m

https://en.wikipedia.org/wiki/Crypto-agility

Suitable for limited resources

* Includes multipart APIs for messages that don’t fit in RAM

* The APl can be implemented without malloc
« (Mbed TLS currently uses malloc — maybe Mbed TLS 4.0 will be malloc-free?)

e All algorithms are optional
« You can build a device with just what you need

8 © 2020 Arm Limited a r m

Main features

* Cryptographic primitives
- Symmetric: hash, MAC, unauthenticated cipher, AEAD, key derivation
- Asymmetric: signature, encryption, key agreement

* Key store

- All keys are accessed through identifiers
-~ No need to know where a key is to use it (RAM, internal storage, secure element, ...)
— Can run as a library in the same memory space, or as a separate service protected by MPU, MMU, TrustZone,

TrustZone-M, ...
- Simple key policies
— Declare what operations are allowed (sign, export, ...) and what algorithm

 Random generation
https://armmbed.github.io/mbed-crypto/psa/

9 © 2020 Arm Limited a r m

https://armmbed.github.io/mbed-crypto/psa/

Driver interface

10

Combine a core (e.g. Mbed TLS) with one or more drivers

Transparent drivers
« For accelerators

- Operations receive keys in cleartext
- Can fall back to software (e.g. to deploy the same image on different hardware)

Opaque drivers

- For external secure elements, secure enclaves, accelerators with their own key encryption key, ...

- Operations receive keys in custom format:

— wrapped key material, or
- slot number or label of a key stores inside the secure element

Entropy drivers

© 2020 Arm Limited

arm

Building with drivers

Mbed TLS

driver _wrappers.c
automatically generated

if (location==APEX)
apex_sign hash();
else
acme_sign _hash();

Driver 1
acme.c

acme_sign hash() {

}

driver.json

{"prefix":"acme",
"type":"transparent",
"capabilities":
[{"entry points":

["sign_hash"]}]}

Driver 2
apex.c

apex_sign hash() {

}

driver.json

{"prefix":"acme",
lltypell : Ilopaquell)
"capabilities":
[{"entry points":

["sign_hash"]}]}

/src/mbedtls$ make PSA DRIVERS="../acme/driver.json ../apex/driver.json"
/src/myapp$ 1d myapp.o ../mbedtls/libmbedcrypto.a ../acme/acme.a ../apex/apex.a

11 © 2020 Arm Limited a rI I I

Crypto APIs in Mbed TLS: VS pSa_ XXX

A

Functionality [/
>

A
//
Performance &
code size
>
Mbed TLS versions 2.17 2.X 3.0 3.X 4.0

12 © 2020 Arm Limited a r m

Useful links

Arm Platform Security Architecture (PSA):

https://developer.arm.com/architectures/security-architectures/platform-security-architecture

* PSA Cryptography APl information: https://armmbed.github.io/mbed-crypto/psa/

- Reference documentation: PDF, HTIVIL
- Driver interfaces (DRAFT): accelerators and secure elements, entropy source

e Mbed TLS: https://github.com/ARMmbed/mbedtls
* Trusted Firmware-M (TF-M):

https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-m

 We welcome feedback!
« Public: on the psa-crypto mailing list (psa-crypto@lists.trustedfirmware.org)
- Confidential: email us at mbed-crypto@arm.com

13 © 2020 Arm Limited a r m

https://developer.arm.com/architectures/security-architectures/platform-security-architecture
https://armmbed.github.io/mbed-crypto/psa/
https://github.com/ARMmbed/mbed-crypto/raw/psa-crypto-api/docs/PSA_Cryptography_API_Specification.pdf
https://armmbed.github.io/mbed-crypto/html/index.html
https://github.com/ARMmbed/mbedtls/blob/development/docs/proposed/psa-driver-interface.md
https://armmbed.github.io/mbed-crypto/psa/entropy/
https://github.com/ARMmbed/mbedtls
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-m
https://lists.trustedfirmware.org/mailman/listinfo/psa-crypto
mailto:psa-crypto@lists.trustedfirmware.org
mailto:mbed-crypto@arm.com

- Thank You
DERLGE
Merci

- T
HYMNES
- Gracias
_ ~Kiitos
T AR L O
gYdiq
54

nNTIN

© 2019 Arm Limited

