
© 2020 Arm Limited

Mbed TLS workshop —
PSA Cryptography API

Gilles Peskine

• 2020-11-02



2 © 2019 Arm Limited

Independentl
y tested

Platform Security Architecture
A framework for building secure devices – openly published.

Analyze Architect Implement Certify

Hardware & firmware 
architect specifications

Firmware
source code

Independently
tested

Threat models 
& security analyses



3 © 2020 Arm Limited

PSA Developer APIs – making security easy to use

A consistent set of 
APIs simplifies 

developer access to 
security functions 

across the industry

PSA Developer APIs
Trusted 

boot

Crypto Attestation

Secure
Storage

Any RTOS

Any 
architecture

PSA RoT

Example security functions

Developers



4 © 2020 Arm Limited

Balancing
vs

• Cryptography is hard to use, easy to misuse
• Functional tests don’t tell you your code is 

insecure

• Make the most obvious path secure
• But please do read the documentation!

• The best crypto API is no API
• “If you’re typing the letters A-E-S into your 

code you’re doing it wrong” — Thomas Ptacek
• Secure storage:
f = open("/ext/myfile"); read(f);

• Secure communication: TLSSocket sock; 

sock.connect("example.com", 443);

But how does this work under the hood?

• Need low-level primitives to implement TLS, 
IPsec, WPA, LoRaWAN, Bluetooth, GSM, ZigBee, 
…

• Need to do dodgy-but-ok-in-this-context things 
sometimes
• Deprecated crypto is still in use: MD5 (TLS 

1.1), CBC (TLS 1.1), unauthenticated ciphers 
(storage), RSA PKCS#1 v1.5 (TLS 1.2), 3DES 
(banking), …

• Key derivation in the real world is a mess
• A key should only be used for one purpose… 

except when protocols dictate otherwise

ease of use flexibility

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2009/july/if-youre-typing-the-letters-a-e-s-into-your-code-youre-doing-it-wrong/


5 © 2020 Arm Limited

Use an existing crypto API?

• Evolve Mbed TLS?
• Would be hard to add support for opaque keys
• Too flexible: gives you a lot of rope to hang yourself
• Very transparent data structures with visible pointers

– Cumbersome to plug in hardware acceleration or keystore isolation
– Relies heavily on malloc (so not suitable for e.g. MISRA)

• cryptlib? OpenSSL/BoringSSL/LibreSSL/…?
• Too big, not easy to use

• NaCl/libsodium?
• Not flexible enough: only includes black-box primitives

• Any API in C++/Rust/Go/…?
• We need C, the common denominator

https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://nacl.cr.yp.to/
https://download.libsodium.org/doc/


6 © 2020 Arm Limited

What about PKCS#11?

The elephant in the room!

• Example: sign with existing key

• /* Discover the key */
CK_ATTRIBUTE label_attribute =

{CKA_LABEL, "Fred",
strlen("Fred")};

C_FindObjectsInit(hSession,
&label_attribute, 1);

C_FindObjects(hSession,
&hKey, 1, &count);

/* Sign with the key */
CK_MECHANISM mechanism =

{CKM_ECDSA_SHA256, NULL_PTR, 
0};
C_SignInit(hSession,

&mechanism, hKey);
C_Sign(hSession, msg, msg_len,

&sig, &sig_len);

• Big, we’d have to define a 
subset

• Key discovery is complex

• Lots and lots of parsing

• Standard compliance is poor 
in practice

• Not good at access control
• Designed for a single 

user

Not so easy to use Not the right shape

🐘

PKCS#11 = Cryptoki: standard interface for smartcards



7 © 2020 Arm Limited

Some API design guidelines

• Make it easy to use, hard to misuse
• KISbntS: keep it simple, (but not too) stupid

• Uniform interface to memory buffers
• Explicit sizes throughout
• You don’t need to understand the algorithm to know how much memory to allocate

• Cryptographic agility
• Select a key type and mode during key creation
• Call sequence, buffer size calculations are uniform across algorithms of the same kind

• “Security agility”
• Single API, multiple isolation levels under the hood

https://en.wikipedia.org/wiki/Crypto-agility


8 © 2020 Arm Limited

Suitable for limited resources

• Includes multipart APIs for messages that don’t fit in RAM

• The API can be implemented without malloc
• (Mbed TLS currently uses malloc — maybe Mbed TLS 4.0 will be malloc-free?)

• All algorithms are optional
• You can build a device with just what you need



9 © 2020 Arm Limited

Main features

• Cryptographic primitives
• Symmetric: hash, MAC, unauthenticated cipher, AEAD, key derivation
• Asymmetric: signature, encryption, key agreement

• Key store
• All keys are accessed through identifiers

– No need to know where a key is to use it (RAM, internal storage, secure element, …)
– Can run as a library in the same memory space, or as a separate service protected by MPU, MMU, TrustZone, 

TrustZone-M, …

• Simple key policies
– Declare what operations are allowed (sign, export, …) and what algorithm

• Random generation

• https://armmbed.github.io/mbed-crypto/psa/

https://armmbed.github.io/mbed-crypto/psa/


10 © 2020 Arm Limited

Driver interface

• Combine a core (e.g. Mbed TLS) with one or more drivers

• Transparent drivers
• For accelerators
• Operations receive keys in cleartext
• Can fall back to software (e.g. to deploy the same image on different hardware)

• Opaque drivers
• For external secure elements, secure enclaves, accelerators with their own key encryption key, …
• Operations receive keys in custom format:

– wrapped key material, or
– slot number or label of a key stores inside the secure element

• Entropy drivers



11 © 2020 Arm Limited

Building with drivers
Driver 1

acme.c

acme_sign_hash() {
…

}

driver.json

{"prefix":"acme",
"type":"transparent",
"capabilities":
[{"entry_points":
["sign_hash"]}]}

Driver 2

apex.c

apex_sign_hash() {
…

}

driver.json

{"prefix":"acme",
"type":"opaque",
"capabilities":
[{"entry_points":
["sign_hash"]}]}

/src/mbedtls$ make PSA_DRIVERS="../acme/driver.json ../apex/driver.json"

/src/myapp$ ld myapp.o ../mbedtls/libmbedcrypto.a ../acme/acme.a ../apex/apex.a

Mbed TLS

driver_wrappers.c
automatically generated

if (location==APEX)
apex_sign_hash();

else
acme_sign_hash();



12 © 2020 Arm Limited

Crypto APIs in Mbed TLS: mbedtls_xxx vs psa_xxx

Performance &
code size

Mbed TLS versions 2.x 3.0 3.x2.17 4.0

Functionality



13 © 2020 Arm Limited

Useful links

• Arm Platform Security Architecture (PSA):
https://developer.arm.com/architectures/security-architectures/platform-security-architecture

• PSA Cryptography API information: https://armmbed.github.io/mbed-crypto/psa/
• Reference documentation: PDF, HTML
• Driver interfaces (DRAFT): accelerators and secure elements, entropy source

• Mbed TLS: https://github.com/ARMmbed/mbedtls

• Trusted Firmware-M (TF-M):
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-m

• We welcome feedback!
• Public: on the psa-crypto mailing list (psa-crypto@lists.trustedfirmware.org)
• Confidential: email us at mbed-crypto@arm.com

https://developer.arm.com/architectures/security-architectures/platform-security-architecture
https://armmbed.github.io/mbed-crypto/psa/
https://github.com/ARMmbed/mbed-crypto/raw/psa-crypto-api/docs/PSA_Cryptography_API_Specification.pdf
https://armmbed.github.io/mbed-crypto/html/index.html
https://github.com/ARMmbed/mbedtls/blob/development/docs/proposed/psa-driver-interface.md
https://armmbed.github.io/mbed-crypto/psa/entropy/
https://github.com/ARMmbed/mbedtls
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-m
https://lists.trustedfirmware.org/mailman/listinfo/psa-crypto
mailto:psa-crypto@lists.trustedfirmware.org
mailto:mbed-crypto@arm.com


Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

© 2019 Arm Limited


