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PSA Developer APIs – making security easy to use
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Balancing
vs

• Cryptography is hard to use, easy to misuse
• Functional tests don’t tell you your code is 

insecure

• Make the most obvious path secure
• But please do read the documentation!

• The best crypto API is no API
• “If you’re typing the letters A-E-S into your 

code you’re doing it wrong” — Thomas Ptacek
• Secure storage:
f = open("/ext/myfile"); read(f);

• Secure communication: TLSSocket sock; 

sock.connect("example.com", 443);

But how does this work under the hood?

• Need low-level primitives to implement TLS, 
IPsec, WPA, LoRaWAN, Bluetooth, GSM, ZigBee, 
…

• Need to do dodgy-but-ok-in-this-context things 
sometimes
• Deprecated crypto is still in use: MD5 (TLS 

1.1), CBC (TLS 1.1), unauthenticated ciphers 
(storage), RSA PKCS#1 v1.5 (TLS 1.2), 3DES 
(banking), …

• Key derivation in the real world is a mess
• A key should only be used for one purpose… 

except when protocols dictate otherwise

ease of use flexibility

https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2009/july/if-youre-typing-the-letters-a-e-s-into-your-code-youre-doing-it-wrong/
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Use an existing crypto API?

• Evolve Mbed TLS?
• Would be hard to add support for opaque keys
• Too flexible: gives you a lot of rope to hang yourself
• Very transparent data structures with visible pointers

– Cumbersome to plug in hardware acceleration or keystore isolation
– Relies heavily on malloc (so not suitable for e.g. MISRA)

• cryptlib? OpenSSL/BoringSSL/LibreSSL/…?
• Too big, not easy to use

• NaCl/libsodium?
• Not flexible enough: only includes black-box primitives

• Any API in C++/Rust/Go/…?
• We need C, the common denominator

https://www.cs.auckland.ac.nz/~pgut001/cryptlib/
https://nacl.cr.yp.to/
https://download.libsodium.org/doc/
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What about PKCS#11?

The elephant in the room!

• Example: sign with existing key

• /* Discover the key */
CK_ATTRIBUTE label_attribute =

{CKA_LABEL, "Fred",
strlen("Fred")};

C_FindObjectsInit(hSession,
&label_attribute, 1);

C_FindObjects(hSession,
&hKey, 1, &count);

/* Sign with the key */
CK_MECHANISM mechanism =

{CKM_ECDSA_SHA256, NULL_PTR, 
0};
C_SignInit(hSession,

&mechanism, hKey);
C_Sign(hSession, msg, msg_len,

&sig, &sig_len);

• Big, we’d have to define a 
subset

• Key discovery is complex

• Lots and lots of parsing

• Standard compliance is poor 
in practice

• Not good at access control
• Designed for a single 

user

Not so easy to use Not the right shape

🐘

PKCS#11 = Cryptoki: standard interface for smartcards
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Some API design guidelines

• Make it easy to use, hard to misuse
• KISbntS: keep it simple, (but not too) stupid

• Uniform interface to memory buffers
• Explicit sizes throughout
• You don’t need to understand the algorithm to know how much memory to allocate

• Cryptographic agility
• Select a key type and mode during key creation
• Call sequence, buffer size calculations are uniform across algorithms of the same kind

• “Security agility”
• Single API, multiple isolation levels under the hood

https://en.wikipedia.org/wiki/Crypto-agility
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Suitable for limited resources

• Includes multipart APIs for messages that don’t fit in RAM

• The API can be implemented without malloc
• (Mbed TLS currently uses malloc — maybe Mbed TLS 4.0 will be malloc-free?)

• All algorithms are optional
• You can build a device with just what you need
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Main features

• Cryptographic primitives
• Symmetric: hash, MAC, unauthenticated cipher, AEAD, key derivation
• Asymmetric: signature, encryption, key agreement

• Key store
• All keys are accessed through identifiers

– No need to know where a key is to use it (RAM, internal storage, secure element, …)
– Can run as a library in the same memory space, or as a separate service protected by MPU, MMU, TrustZone, 

TrustZone-M, …

• Simple key policies
– Declare what operations are allowed (sign, export, …) and what algorithm

• Random generation

• https://armmbed.github.io/mbed-crypto/psa/

https://armmbed.github.io/mbed-crypto/psa/
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Driver interface

• Combine a core (e.g. Mbed TLS) with one or more drivers

• Transparent drivers
• For accelerators
• Operations receive keys in cleartext
• Can fall back to software (e.g. to deploy the same image on different hardware)

• Opaque drivers
• For external secure elements, secure enclaves, accelerators with their own key encryption key, …
• Operations receive keys in custom format:

– wrapped key material, or
– slot number or label of a key stores inside the secure element

• Entropy drivers
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Building with drivers
Driver 1

acme.c

acme_sign_hash() {
…

}

driver.json

{"prefix":"acme",
"type":"transparent",
"capabilities":
[{"entry_points":
["sign_hash"]}]}

Driver 2

apex.c

apex_sign_hash() {
…

}

driver.json

{"prefix":"acme",
"type":"opaque",
"capabilities":
[{"entry_points":
["sign_hash"]}]}

/src/mbedtls$ make PSA_DRIVERS="../acme/driver.json ../apex/driver.json"

/src/myapp$ ld myapp.o ../mbedtls/libmbedcrypto.a ../acme/acme.a ../apex/apex.a

Mbed TLS

driver_wrappers.c
automatically generated

if (location==APEX)
apex_sign_hash();

else
acme_sign_hash();
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Crypto APIs in Mbed TLS: mbedtls_xxx vs psa_xxx

Performance &
code size

Mbed TLS versions 2.x 3.0 3.x2.17 4.0

Functionality
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Useful links

• Arm Platform Security Architecture (PSA):
https://developer.arm.com/architectures/security-architectures/platform-security-architecture

• PSA Cryptography API information: https://armmbed.github.io/mbed-crypto/psa/
• Reference documentation: PDF, HTML
• Driver interfaces (DRAFT): accelerators and secure elements, entropy source

• Mbed TLS: https://github.com/ARMmbed/mbedtls

• Trusted Firmware-M (TF-M):
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-m

• We welcome feedback!
• Public: on the psa-crypto mailing list (psa-crypto@lists.trustedfirmware.org)
• Confidential: email us at mbed-crypto@arm.com

https://developer.arm.com/architectures/security-architectures/platform-security-architecture
https://armmbed.github.io/mbed-crypto/psa/
https://github.com/ARMmbed/mbed-crypto/raw/psa-crypto-api/docs/PSA_Cryptography_API_Specification.pdf
https://armmbed.github.io/mbed-crypto/html/index.html
https://github.com/ARMmbed/mbedtls/blob/development/docs/proposed/psa-driver-interface.md
https://armmbed.github.io/mbed-crypto/psa/entropy/
https://github.com/ARMmbed/mbedtls
https://developer.arm.com/tools-and-software/open-source-software/firmware/trusted-firmware/trusted-firmware-m
https://lists.trustedfirmware.org/mailman/listinfo/psa-crypto
mailto:psa-crypto@lists.trustedfirmware.org
mailto:mbed-crypto@arm.com
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