
© 2020 Arm Limited

Symmetric key based
device attestation

Trusted Firmware M

Tamas Ban
Arm

© 2020 Arm Limited2

Agenda

• Attestation service overview

• Token encoding: CBOR and COSE

• Comparison of ECDSA and HMAC auth. tag

© 2020 Arm Limited3

What?
Attestation tokens are small reports that are produced by a device upon request. Tokens
are composed of key/value pairs called claims.

Why?
Device can prove its identity and relying party can assess the device trustworthiness based
on the hardware and firmware related claims in the token.

How?
The tokens are attested because they are signed by devices using a device-unique
cryptographic key. Simple flow:

• Receive an attestation request from the outside world.

• Collect any relevant data, build a report as a set of key/value pairs.

• Format the report in a canonical form and sign it with the device attestation key.

• Send the result back.

© 2020 Arm Limited4

Attestation overview

• Device-unique
cryptographic key is
securely provisoned during
manfacturing

• Verification key and HW ID
is extracted and registered
to database

• Firmware versions and their
measurments value also
loaded to the database

• Validation entity checks the
token signature and
compare claims against
database

© 2020 Arm Limited5

Attestation flow

Initial attestation API:
psa_initial_attest_get_token(...)

psa_initial_attest_get_token_size(...)

tfm_initial_attest_get_public_key(...)

Remote serverNon-secureSecure - PRoTHW

• Attestation request received
from a remote party

• Challenge can be nonce from
server to ensure freshness of
the token or locally attested
data

• Devic specific data added to
the token

• Token authentication tag
generated:

• Asymmetric key: ECDSA
P256 over SHA256

• OR symmetric key: HMAC

© 2020 Arm Limited6

Attestation architecture in TF-M

• Secure bootloader
authenticates the
firmware images and
provide the boot record to
runtime firmware to
include it to attestation
token

• Attestation service collects
the data items, encode
them to CBOR format and
sign the token

© 2020 Arm Limited7

CBOR

“Concise Binary Object Representation” (CBOR, http://cbor.io)

Compact code and data representation for IoT

Standards based (RFC 7049), quite mature

Handles multiple data types, with open
source implementations and tools

Data types are simple & powerful – a
claim can be a simple integer or have a
complex internal structure; allows for
optional data

QCBOR library

http://cbor.io/
https://github.com/laurencelundblade/QCBOR

© 2020 Arm Limited8

COSE

CBOR Object Signing and Encryption (“COSE”)

An IoT-oriented format for signing and/or encrypting a payload

Much simpler and more compact than PKCS #7, CMS and JOSE

COSE provides structuring of payload, algorithm identification, key identification and
signature

COSE signed tokens are small, self-secured data blobs

Standard format (RFC 8152) allows use and development of standard / open source tools

T-COSE library

https://git.trustedfirmware.org/trusted-firmware-m.git/tree/lib/t_cose

© 2020 Arm Limited9

What is symmetric key based attestation?

• Device is provisoned with shared symmetric key (device and verifier).

• Symmetric key is used to generate a token authentiction tag, which ensures the token
integrity and authenticity: HMAC tag

• The rest is more or less the same.

© 2020 Arm Limited10

What we gain with symmetric keys?

• Flash space

• Dropping asymmetric crypto algorithms from crypto service reduce its size significantly.

• TF-M Profile Small is addressing constrained devices, where image size really matters.

• HMAC based token authentication using hashing algorithm only and no asymmetric
crypto algorithm.

© 2020 Arm Limited11

What we can lose with symmetric keys?

• Limited use cases and higher cost of the associated infrastructure for key management
and operational complexities.

• In case of HMAC (due to the shared secrets) the DM or CM might need to run the
verification service, while in the other case this can be done by a third party: cloud
service provider.

• The usage of symmetric keys make the system more vulnerable to secret disclosure.

• Private keys are only stored on device, but symmetric keys must be known by both
party: device and verifier.

• If the database with the symmetric keys becomes compromised, then all corresponding
devices become untrusted.

• Since a centralized database of symmetric keys may need to be network connected, this
can be considered to be a valuable target for attackers.

© 2020 Arm Limited12

ECDSA vs. HMAC

ECDSA HMAC

Secret stored Device Device + verification database

Verification database Public keys Same symmetric key

Protection of the verification database Integrity Integrity + confidentality

Who can verify token? Third party CM or DM

Crypto algorithms Hash + elliptic curve Hash

Flash requirements High Low

© 2020 Arm Limited13

Affected SW components

• API does not change

• HMAC can be enabled by
compile time switch

© 2020 Arm Limited14

Difference in the token

© 2020 Arm Limited15

More info

PSA Attestation API

TF-M Initial Attestation user guide

TF-M Initial Attestation code

Design proposals:

• Symmetric key based device attestation

• Comparison of asymmetric and symmetric key based device attestation

https://developer.arm.com/-/media/Files/pdf/PlatformSecurityArchitecture/Implement/IHI0085-PSA_Attestation_API-1.0.2.pdf?revision=eef78753-c77e-4b24-bcf0-65596213b4c1&la=en&hash=E5E0353D612077AFDCE3F2F3708A50C77A74B2A3
https://git.trustedfirmware.org/trusted-firmware-m.git/tree/docs/user_guides/services/tfm_attestation_integration_guide.rst
https://git.trustedfirmware.org/trusted-firmware-m.git/tree/secure_fw/services/initial_attestation
https://review.trustedfirmware.org/c/trusted-firmware-m/+/3898
https://review.trustedfirmware.org/c/trusted-firmware-m/+/3344/2/docs/design_documents/iat_static_token.rst#42

