
© 2020 Arm Limited (or its affiliates)

7 May 2020

TF-A CMake build 
system

Javier Almansa Sobrino



2 © 2020 Arm Limited (or its affiliates)

Table of contents
• Motivation
• Introduction to CMake

• CMake workflow
• CMake integration into TF-A

• Two phase approach
• Needed features for the framework
• Framework overview
• Config examples

− Groups
− Targets

• Current status

• Future Plan/Roadmap



3 © 2020 Arm Limited (or its affiliates)

Motivation
• Current build system based on GNU Make
• As the project grows, the current build system is getting hard to scale

• Large amount of options and dependencies
• It makes difficult not to break some parts of the system when 

adding support to others
• The current build system is unable to detect changes on the 

configuration: the workspace needs to be cleaned in the case we 
need to rebuild with different options

• CMake has been successfully used on several other projects at ARM
• More scalable
• Able to handle dependencies easier
• Detects changes on the configuration
• More portable
• Richer feature set compared to the current build system



4 © 2020 Arm Limited (or its affiliates)

Introduction to CMake

• CMake is a tool to describe and generate buildsystems.

• Describes a project in the CMake language
• OS, compiler and target independent

• CMake generates a buildsystem using a generator
• Many generators available (Makefile, Ninja, VS, etc)

• Cons
• CMake language



5 © 2020 Arm Limited (or its affiliates)

CMake workflow
• Files

• CMakeLists
− Project description in CMake 

language
• CMakeCache

− Text file with cached CMake 
variables

− Persistent across multiple runs
• Steps

• Configuration
− Build cache based on CmakeLists
− CMake scripts are parsed/run
− Create native build tool files

• Build
− The actual build tool is ran and 

the compiler and other tools get 
invoked



6 © 2020 Arm Limited (or its affiliates)

CMake integration into TF-A
• Solutions to CMake cons

• CMake framework
− Hosted on its own repository on TF-A
− Shared portion of CMake scripts
− Project independent

• Built-definitions
− Project specific CMake scripts
− Merged into TF-A
− Rely on functions and macros implemented in the CMake 

framework



7 © 2020 Arm Limited (or its affiliates)

Two phase approach
1. Without code refactor (now)

• No source code modification
• Project structure and modularization untouched
• Buildsystem logic similar to Makefile
• CMake language with not all features used.

2. Code refactoring (future)
• Refactor TF-A source code where necessary
• Better modularization, clear APIs/dependencies
• Separate include paths
• Use all CMake features, such as transitive dependency propagation



8 © 2020 Arm Limited (or its affiliates)

Needed features for the framework
Features

• Structured configuration description
• Build options
• Defines, flags, etc.

• Target description

• What are we building

• Source files, linked libraries

• Liker script, etc.

• Compiler abstraction

• External tools

Solutions

• Utilities
• Map: Key-value pairs
• Groups: Collection of maps
• Config files

• STGT API

• Wrap CMake functions

• Use setting groups

• Compiler_functions for common tasks

• Preprocess, set linker script, etc.

• find_package modules

• For fiptool, dtc, etc.



9 © 2020 Arm Limited (or its affiliates)

Framework overview



10 © 2020 Arm Limited (or its affiliates)

Config example
Groups

• Groups allow 
to define sets 
of related 
flags, build 
options or 
definitions.



11 © 2020 Arm Limited (or its affiliates)

Config example
Targets

• Groups all the 
artifacts 
needed to 
build a binary:

• Src files
• Includes
• Libraries

• Allows for 
conditional 
inclusion of 
srcs



12 © 2020 Arm Limited (or its affiliates)

Current status

● Current framework is work in progress.
● More features will need to be added as migration to the new build 

system progresses
● Basic support for FVP is available – Internal, WIP

● Some libraries with basic support



13 © 2020 Arm Limited (or its affiliates)

• CMake build system is in a very early 
stage. Still a lot of work to do:

• Finish FVP port
• Add support for missing components 

and configurations
• sp_min, support for 32bit build, etc.
• Extend the framework as needed
• Support for armclang and for 

KConfig, among others
• Prepare porting over platforms
• TF-A CI integration
• Documentation
• Make and CMake coexistence
• Both would have to coexist for a 

long period of time
• Make deprecation The current plan is still under development and the deadline 

for all the milestones are TBD. Their order of implementation 
may vary with regards to the one exposed here.

Future plan/Roadmap



© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci谢谢ありがとう

Gracias
Kiitos감사합니다
धन्यवाद

شكرًا
 ধন্য�বা�দ 

תודה



The Arm trademarks featured in this presentation 
are registered trademarks or trademarks of Arm 

Limited (or its subsidiaries) in the US and/or 
elsewhere.  All rights reserved.  All other marks 
featured may be trademarks of their respective 

owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affiliates)


	Slide 1
	One Column Slide_clipboard0
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

