
Confidential © 2019 Arm Limited

Random SMC
Testing Strategy

• Mark Dykes

Confidential © 2019 Arm Limited2

Justification for directed randomized approach:

Behavior of tests changes per seed therefore…

o Can exercise many more code paths

o Better ability to find bugs/coverage points with much less effort than directed tests

o Increase in effectiveness with time -> issues can be found when time is increased to run more operations

o Better at finding issues with large state space variables

o Events and functions can be reordered in many different ways

o Potentially reduce test set since each test can be more comprehensive

o Lends to rule based test coding rather than strict code control of program flow

Confidential © 2019 Arm Limited3

Approach to SMC calls(preliminary):

In Loop
.
.

Rand_SMC()
.
.

General SMC
Constraints

General SMC
variant

Specialized
SMC

Constraints

Test (EL2)

Random
argument

input

SMC Call

Specialized
SMC Call

Constraint
object

Confidential © 2019 Arm Limited4

Constraint properties

The constraint will:

• Allow a user to tailor the testing to particular area of interest

• Have multiple layers of biasing among the options

• Override default behavior of randomization

• Can reduce test to be of a directed type

• Allows change of constraints per invocation of the random SMC

• Be of object type to be manipulated as any data object would

Confidential © 2019 Arm Limited5

Bias tree model of SMC selection:

SMC_var1 = 65
SMC_var2 = 40
SMC_var3 = 25
SMC_var4 = 80

Biased list of general SMC calls

SMC_var1_var1 = 40
SMC_var1_var2 = 50

SMC_var2_var1 = 30
SMC_var2_var2 = 80
SMC_var2_var3 = 80

SMC_var3

SMC_var4_var1 = 15
SMC_var4_var2 = 90

SMC_var1_var1_var1 = 30
SMC_var1_var1_var2 = 70

SMC_var2_var1

SMC_var4_var1_var1 = 30
SMC_var4_var1_var2 = 70

SMC_var2_var2

SMC_var2_var3

SMC_var4_var2

SMC_var1_var1_var1

SMC_var1_var1_var2

SMC_var4_var1_var1

SMC_var4_var1_var2

Final

Final

Final

Final

Final

Final

Final

Final

Final
SMC_var1_var2

Final

Bias tree can be
extended to any
number of levels

Confidential © 2019 Arm Limited6

Programming Constraints

The random SMC call will accept a single constraint argument that will contain all of the biases

needed

Rand_SMC(constraint_obj)

The constraint object will have access methods to modify any of the biases across all hierarchies

Constraint_obj.SMC_var1 = 50
Constraint_obj.SMC_var1_var2 = 10

The default bias of all types will be set to 50 for an unmodified constraint object(when instantiated)

If no argument is given to Rand_SMC then default bias(50) for all types will be used

Confidential © 2019 Arm Limited7

Functions can be provided that will set the biases in the constraint object for interesting

Combinations or even random biases…

Constraint_obj = Set_constraints(SMC_type)
Constraint_obj = Set_constraints(Random)

Alternately, a library of objects could be provided for many interesting combinations

For the purposes of SDL and security hardening another bias type could be employed to

cover special SMC calls that execute with types that could expose vulnerabilities not

seen with other variations

Confidential © 2019 Arm Limited8

Structure of Random SMC call

All calls would adopt the same basic format that would be based upon a template

version that would loosely follow the directed test instance

SMCPre

SMC Call

SMCPost

All setup occurs here, setting of
registers to indicate type, system

preparation, and random stimulus

Checking of return status
and restoration of state if

needed

Confidential © 2019 Arm Limited9

Considerations for randomized setup

• All SMC invocations should exist as autonomously as possible

• The state of the system must remain the same between calls as much as possible

• Must have common error/warning handling protocol in place(will be addressed soon)

• Can work in parallel with directed tests without issue

• Will have to have methodology to address vendor specific types of testing

Confidential © 2019 Arm Limited10

Implementation

Confidential © 2019 Arm Limited11

Example random SMC bias tree using device tree format

/ {

smc32_fast {

bias = <65>;
svc_uid {

bias = <30>;
functionname = "svc_smc_uid";

};
smc_unk {

bias = <30>;
functionname = "smc_unk";

};
};

smc64_fast {
bias = <35>
svc_uid {

bias = <30>;
functionname = "svc_smc_uid";

};
smc_unk {

bias = <30>;
functionname = "smc_unk";

};
smc_affinity {

bias = <40>;
functionname = "smc_affinity";

};
};

};

smc32_fast 65

smc64_fast 35

Category bias

svc_uid 30 svc_smc_uid

smc_unk 30 smc_unk

Category bias Function call in TFTF

svc_uid 30 svc_smc_uid

smc_unk 30 smc_unk

smc_affinity 40 smc_affinity

Category bias Function call in TFTF

Result would be placed within C bias tree
representation(constraint object)

Confidential © 2019 Arm Limited12

Status:

• The prototype to read and create the tree is complete in C code

• Had meeting with Joanna and Sandrine to best determine integration strategy into CI

• The device tree binary will be integrated into the FIP

• Challenge will be to ensure that memory limits will not be exceeded by larger trees

• Focus will be initially to randomize the flavor of SMC rather than inherent arguments

• Begin with one CPU?

• Currently exploring options for malloc function in TFTF. Have created malloc prototype

that is around 70% complete

Confidential © 2019 Arm Limited13

Proposal for CI integration:

Usage model:

The enablement and control of feature would be specified in a given TFTF config similar to

how current testing categories are conducted. A separate directory under platform-ci would

contain all device trees for the purpose of SMC fuzzing. An example config file might contain:

CROSS_COMPILE=aarch64-linux-gnu-
PLAT=fvp

RAND_SMC=rand_smc_psci.dts
RAND_SMC_NUM=10

Device tree
file

Number of
times to run
random SMC

call

Confidential © 2019 Arm Limited14

Key challenges:

• No provision for C memory management

• Must designate special memory area for the bias tree

• Create a TFTF_malloc?

• Extensive work necessary to support fuzzing

• Allow directed tests to run before/after random SMC phase? Or mutually exclusive?

• Could be 2-3 sprints worth of effort to get initial CI runs in place

