
Trusted Firmware-A
Tech Forum

Oct 22, 2020

Encrypted FIP Support
Sumit Garg
Linaro Ltd.

Overview
● FIP encryption

○ Assets

○ Use-cases

● Challenges

○ Secret key protection?

○ Device unique or class wide key?

○ Play nicely with firmware signature?

○ Firmware updates?

● Implementation

FIP encryption
FIP: Firmware Image Package

FIP encryption allows us to achieve confidentiality and in turn integrity for a firmware
image bundled as part of FIP, using:

● Symmetric encryption

○ Reason to not use asymmetric encryption: boot time limitation.

● Authenticated encryption (eg. AES-GCM)

○ Ensures integrity of encrypted firmware blob.

FIP encryption

Possible firmware assets to protect:

● Software IP

○ Allow confidentiality protection for software IP.

● Device secrets

○ Allow firmware image to act as secret store (though unlikely to be suitable for high value
secrets).

● Implementation details

○ Make it harder to develop exploits for any vulnerabilities in the firmware.

Assets?

FIP encryption

The major drivers for this feature are the emerging robustness requirements for
software Digital Rights Management (DRM) implementations.

Make it even harder to reverse engineer Trusted Execution Environment (TEE) and
therefore would like to see that Trusted OS is not just signed, but also encrypted.

TEE assets:

● DRM software IP.

● DRM implementation details.

Use-cases?

FIP encryption

Flash memory

 OEM /
Service Provider

Authenticated
Encryption FIP blob

FIP image

Bootloader

Authenticated
Decryption

Runtime FW

Secret key

Image provisioning Boot sequence

Challenge: Secret key protection?
Secret key protection may vary from one platform to another depending on use-case
and hardware capabilities like:

● Key is derived from device secrets like OTP or such.

● Key is provisioned into secure fuses on the device.

● Key is provisioned into hardware crypto accelerator.

● Key is provisioned into platform secure storage like non-volatile SRAM etc.

Solution: Secret key protection
In order to address this varying requirement, we need to provide an abstraction layer
to retrieve secret key / secret key handle and platform can provide underlying
implementation.

TF-A provides:

int plat_get_enc_key_info(enum fw_enc_status_t fw_enc_status,
uint8_t *key, size_t *key_len,
unsigned int *flags, const uint8_t *img_id,
size_t img_id_len);

Challenge: Device unique or class wide key?
Secret key type?

● Device unique key: Unique per device, aka Binding Secret Symmetric Key (BSSK)

○ Pros: limits attacks surface to per device, provides protection against software cloning.
○ Cons: scalability issue to manage per device unique firmware images.

● Class wide key: Common shared key for a class of devices, aka Shared Secret Key
(SSK)

○ Pros: single firmware image, easy to deploy and update.
○ Cons: comparatively larger attack surface, class wide attacks.

How about leveraging benefits of both key types?

Flash memory
(SSK)

FIP encryption: first boot (firmware binding)

 OEM /
Service Provider

Authenticated
Encrypt (SSK)

FIP blob
(BSSK)

FIP image

Bootloader

Authenticated
Decrypt (SSK) then

Encrypt (BSSK)

Reset

Image provisioning Boot sequence

SSK

BSSK

SSK

Flash memory

FIP encryption: subsequent boot

FIP blob
(BSSK)

Bootloader

Authenticated
Decryption (BSSK)

Runtime FW

Boot sequence

BSSK

Challenge: encryption + signature?
Encryption and signature schemes are well known cryptographic constructs but when
their combination is to be used:

● Proper attention is required towards achievable security properties

Possible combinations:

● Encrypt-then-sign

● Sign-then-encrypt

● Sign-then-encrypt-then-MAC

Signature

Encryption

Challenge: encryption + signature?

Security properties:
● Confidentiality
● Integrity
● Authentication
● Authorization

Shortcomings:
● Only encrypted firmware blob is

non-repudiable to OEM / SP.
● Signing encrypted blob makes it

immutable
○ Doesn’t allow re-encryption on

device, aka firmware binding.

Encrypt-then-sign

FW image

Challenge: encryption + signature?

Security properties:
● Confidentiality
● Authentication
● Authorization
● Non-repudiation

Shortcomings:
● Plain encryption doesn’t assure

integrity of encrypted blob.
○ Vulnerable to Chosen Ciphertext

Attacks (CCAs).

Sign-then-encrypt

Encryption

Signature

FW image

MAC

Solution: encryption + signature
Sign-then-encrypt-then-MAC

Encryption

Signature

FW image

Security properties:
● Confidentiality
● Integrity
● Authentication
● Authorization
● Non-repudiation

Concerns addressed:
● MAC tag assures integrity of

encrypted blob.
● Allows firmware re-encryption.

Challenge: Firmware updates?
Generally, following approaches are used to apply firmware updates:

● Update complete FIP partition

○ Encryption doesn’t adds any complexity

■ Updater could verify overall FIP partition signature.

● Update individual images in FIP

○ Encryption adds complexity:

■ Updater needs to verify each individual image, requires access to encryption key.

■ Either updater needs to be a secure world entity or leverages secure world decrypt and verify
service.

Implementation
Trusted Firmware-A (TF-A) supports an I/O encryption layer (drivers/io/io_encrypted.c):

● Layered on top of any base I/O layer (eg. drivers/io/io_fip.c)
○ To allow loading of corresponding encrypted firmware payload.

● Approach used: sign-then-encrypt-then-MAC
○ Leveraging existing TBBR Chain of Trust.

● Uses encrypt_fw tool (tools/encrypt_fw/) to encrypt firmwares during build.

● Build options:
○ DECRYPTION_SUPPORT: enables firmware decryption layer (values: aes_gcm or none)
○ FW_ENC_STATUS: firmware encryption key flag (values: 0 -> SSK, 1 -> BSSK)
○ ENC_KEY: 32-byte (256-bit) symmetric key
○ ENC_NONCE: 12-byte (96-bit) encryption nonce or Initialization Vector (IV)
○ ENCRYPT_{BL31/BL32}: flag to enable BL31/BL32 encryption

Future work...
● Let’s champion open source security frameworks

○ Reduces efforts to maintain custom solutions

● FIP encryption framework: contributions are welcome, adding:

○ Framework improvement

○ Platform support

Thank you

