
© 2022 Arm

Jayanth Chidanand
21-04-2022

Feature Detection
Mechanism

2 © 2022 Arm

AGENDA

• Introduction

• Need for this mechanism

• Design

• Implementation

• Blockers (Impact on current boot-flow)

• Note for Partners

• Future Scope

3 © 2022 Arm

What is Feature Detection ?

• A mechanism for identifying the features which are enabled (by software) but not
implemented in the hardware.

• A diagnostic procedure to quickly check and get assured which features are not
supported by the hardware at an early stage of booting.

4 © 2022 Arm

Need for Feature Detection ?

• Accessing registers based on architectural version during context management.

• Registers are tightly coupled to features than the arch version.

• For a given version of the architecture, registers will be under the influence of
both the optional and mandatory features.

• If the given version of implementation does not support both, unconditional
access to such registers leads to undefined behaviour.

• Altogether saving and restoring of registers without verifying their
actual presence in the PE leads to runtime EL-3 exceptions.

5 © 2022 Arm

Code Snippet (earlier)

#if ARM_ARCH_AT_LEAST(8, 6)

mrs x13, HAFGRTR_EL2

mrs x14, HDFGRTR_EL2

stp x13, x14, [x0, #CTX_HAFGRTR_EL2]

…................

...................

#endif ARM_ARCH_AT_LEAST(8, 6)

Arm ARM reads:
"HAFGRTR_EL2 register is present only when FEAT_AMUv1 is implemented and FEAT_FGT is implemented. Otherwise, direct accesses to HAFGRTR_EL2 are
UNDEFINED."

But as per Arm ARM, for v8.6 FEAT_FGT is mandatory, FEAT_AMUv1 is optional.

So, the above code, leads to runtime EL-3 exception. This needs to be handled.

6 © 2022 Arm

Method 1:
Having an explicit feature specific build flag, to control the register access, rather than ARM_ARCH_LEAST macro.

Save_routine

#if ENABLE_FEAT_FGT

mrs x13, HDFGRTR_EL2

#if ENABLE_FEAT_AMUv1

mrs x14, HAFGRTR_EL2

stp x13, x14, [x0, #CTX_HDFGRTR_EL2]

#else

str x13, [x0, #CTX_HDFGRTR_EL2]

#endif /* ENABLE_FEAT_AMUv1 */

#endif /* ENABLE_FEAT_FGT */

Restore_routine

#if ENABLE_FEAT_FGT
#if ENABLE_FEAT_AMUv1

ldp x13, x14, [x0, #CTX_HDFGRTR_EL2]
msr HAFGRTR_EL2, x14

#else
ldr x13, [x0, #CTX_HDFGRTR_EL2]

#endif /* ENABLE_FEAT_AMUv1 */
msr HDFGRTR_EL2, x13

#endif /* ENABLE_FEAT_FGT */

7 © 2022 Arm

• Having an explicit build flag for each feature is certainly a good option.

• Pros:
• It avoids dynamic feature detection which will affect the performance as thousands of context switch

happens at runtime between normal and secure worlds.

• Cons:
• However, this still needs some refinement as the feature-specific macros are just the build options and

accidentally still there is a possibility of these options getting enabled and they might still be able to
not match the features and the issue can reappear at a later part.

• To handle these scenarios, build flags need to be validated at an early phase, which is
done via Feature Detection Mechanism.

8 © 2022 Arm

Method 2 (Feature Detection):

• The feature specific build flags need to be validated at an early stage, before
their usage, by reading the specific ID registers to confirm the feature's presence.

• But reading ID registers to verify the presence is again an additional overhead.

• To simplify this, we have designed it in a way, wherein we have introduced feature
detection mechanism at a central boot/initialization path, checking whether the
enabled build options match the given hardware implementation (by reading all the ID
registers) at once.

9 © 2022 Arm

Design

• We have considered a tri-state approach for Feature enablement for EL3.

• The 3 states are:
• ENABLE_FEAT_xxx = 0: The feature is disabled statically at compile time.
• ENABLE_FEAT_xxx = 1: The feature is enabled and must be present in hardware. There will be hard

panic if the feature is not present at cold boot.
• ENABLE_FEAT_xxx = 2: The feature is enabled but dynamically enabled at runtime depending on

hardware capability.

10 © 2022 Arm

TRI-STATES:

FEAT_STATE DESCRIPTION BOOT SECTION CONTEXT_MGMT CONTEXT_SAVE_RESTORE ORDER OF
STRICTNESS

0 Feat Disabled at
Compile time

---- ---- ---- LOW

1 Feat Check at
boot-time

Panic, if in case
Feature enabled
but not present in
the hardware

Feature
Enablement

(set_bit)

Save and Restore feature
specific registers

HIGH

2 Feat Check at
Run-time

---- Feat_Check and
allow bit

enablement, if
supported by

hardware.

Feat_Check and perform
save and restore routines
if supported by hardware.

MEDIUM

11 © 2022 Arm

• Pros:
• The major advantage of using this approach is that we can run the same software on multiple

variants/versions of hardware.
• Also, we are not preventing the boot mechanism as we detect the features and enable them

dynamically with FEAT_STATE=2.
• Flexibility in fine tuning the mechanism.

• Cons:
• Software is relatively less optimized due to many conditional checks (if ENABLE_FEAT_STATE=2).

12 © 2022 Arm

Key features:

• An explicit build option to enable/disable it based
on requirements.

• TRI_STATE: Allowing flexibility to fine tune the
mechanism.

• Supports for both debug and release builds.

• Error logging support.

13 © 2022 Arm

Implementation
• Phase-1 (FEAT_STATE=0 , FEAT_STATE=1)

• Phase-2 (FEAT_STATE=2)

14 © 2022 Arm

Example: FEAT_STATE=1
FeatureName FeatureFlag Boot Section (Bl31_main.c) Context_Management

Section
(context_mgmt.c)

Registers Save &
Restore Section
(Context.S)

FEAT_HCX ENABLE_FEAT_HCX detect_arch_features()
{

read_feat_hcx();
read_feat_xxx();

}

void read_feat_hcx(void)
{
#if (ENABLE_FEAT_HCX == FEAT_STATE_1)

feat_detect_panic(is_feat_hcx_present(),
"HCX");
#endif
}

#if ENABLE_FEAT_HCX
scr_el3 |= SCR_HXEn_BIT;

#endif

Save routine:
#if ENABLE_FEAT_HCX

mrs x14, hcrx_el2
str x14, [x0, #CTX_HCRX_EL2]

#endif /* ENABLE_FEAT_HCX */

Restore routine:
#if ENABLE_FEAT_HCX

ldr x14, [x0, #CTX_HCRX_EL2]
msr hcrx_el2, x14

#endif /* ENABLE_FEAT_HCX */

So, with the above example, it's evident that we are using the build flag in three sections.
If we validate them at an early phase, the subsequent sections will be safe.

15 © 2022 Arm

Example: FEAT_STATE=2 (To do)
FeatureName FeatureFlag Boot Section

(Bl31_main.c)
Context_Management
Section
(context_mgmt.c)

Registers Save & Restore
Section
(Context.S)

FEAT_HCX ENABLE_FEAT_HCX #if ENABLE_FEAT_HCX
#if (ENABLE_FEAT_HCX == FEAT_STATE_2)

if (feat_hcx_present)
#endif

scr_el3 |= SCR_HXEn_BIT;
#endif

Save routine:
#if ENABLE_FEAT_HCX
#if (ENABLE_FEAT_HCX == FEAT_STATE_2)

if (feat_hcx_present)
#endif

mrs x14, hcrx_el2
str x14, [x0, #CTX_HCRX_EL2]

#endif /* ENABLE_FEAT_HCX */

Restore routine:
#if ENABLE_FEAT_HCX
#if (ENABLE_FEAT_HCX == FEAT_STATE_2)

if (feat_hcx_present)
#endif

ldr x14, [x0, #CTX_HCRX_EL2]
msr hcrx_el2, x14

#endif /* ENABLE_FEAT_HCX */

So, here we dynamically enable the features allowing the platforms to boot and then detect and enable the features at runtime.

16 © 2022 Arm

Mandatory Features

• TF-A supports majority of Arm architectural features (Mandatory & Optional).

• We provide an explicit build flag for each mandatory feature enablement, and
this gets validated as part of mechanism.

• A given hardware implementation based on particular arch version, will support the
mandatory features by default.

• Henceforth, TF-A enables those feature-specific build flags by default.

• Eg: FEAT_FGT (As per Arm ARM docs, it’s a mandatory feature from v8.6+), so the build
flag, will be set by default from 8.6 and higher versions. i.e (ENABLE_FEAT_FGT=1)

17 © 2022 Arm

Mandatory Features Detection:

• If the feature is a mandatory feature for a particular arch version and upwards, the
platform which is based on that arch version will implement it.

• Eg: Let's say FEAT_FGT which is mandatory from the 8.6 version. So if a platform is
based on v8.6 it will implement this and this feature will be detected. So no issue here.

If the platform is based on v8.5, this FEAT_FGT is not enabled by the TF-A. It gets
enabled from 8.6. So here, in this case, the feature is disabled so nothing to worry
about.

18 © 2022 Arm

Optional Features

• TF-A provides support for optional features, like the way it does for mandatory.

• However, here we do not enable optional feature by default.

• We allow the platforms to decide based on their requirements.

19 © 2022 Arm

Optional Feature Detection:

• Let's say FEAT_NV2 which is an optional feature from arch version 8.4. is supported by
TF-A. Since it is an optional one as per Arm ARM, TF-A implements and disables it
by default and allows the platforms to decide and enable them as per their
requirements.

• So here, if the platform enables it, it implies they are sure this feature is implemented.
If not, this mechanism will help them by detecting it, so that they disable it in future. In
general, this would not break the boot flow in all scenarios.

• But there is a minor deviation in the way this has been handled for couple of features.

• SPE and SVE.

20 © 2022 Arm

Blockers

• Feature Detection mechanism runs through all the features and checks if there is any
mismatch between software and hardware.

• Now, even though FEAT_SPE and FEAT_SVE are optional features they are enabled by
default in TF-A build system.

• If we detect these optional features, they might not be found on certain platforms
and eventually the booting halts.

• To make it comply with feature detection mechanism ideally it should be disabled by
default and platform which are actually using this feature should enable it in their
platform Makefile.

• The problem is, we do not know which all platforms are actually using these
features : need input from Platform owners.

21 © 2022 Arm

Note for TF-A Partner-platforms:

• To handle the previously mentioned scenarios, for now we have overlooked such
features and introducing this mechanism as an experimental procedure.

• FEATURE_DETECTION build flag has been added to guard the entire implementation.

• As part of the 2.7 release, we have up streamed this implementation .

• We urge the platforms to enable this mechanism, test it and get used to its behaviour
before it gets mandated.

• So, for now, it wouldn't cause any issue. But our plan is to make sure this mechanism
runs by default.

• So, moving ahead, we will refactor the optional features, which are troublesome (
mainly the ones which enabled by default) and ensure partners are aware of it.

• We are happy to hear any feedback from platform owners on handling this issue.

22 © 2022 Arm

Future Scope

• Currently, we are in phase-1 delivery, wherein we have implemented for
{FEAT_STATE=0,1} which will read through all the enabled feature build
flags, ENABLE_FEAT_XXX=1 the respective feature flag will be validated.

• Further we will be handling the exceptional cases discussed earlier and
handle FEAT_STATE=2 for all the features.

• Patch Links:
• https://review.trustedfirmware.org/q/topic:jc/detect_feat
• https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-

options.html?highlight=FEATURE_DETECTION#common-build-options

https://review.trustedfirmware.org/q/topic:jc/detect_feat
https://trustedfirmware-a.readthedocs.io/en/latest/getting_started/build-options.html?highlight=FEATURE_DETECTION

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

