

Agenda

* Hafnium build system (recap)
* Problem statement

* Recent upstreamchanges

* Proposals

2 © 2021 Arm a rm

Hafnium build system (recap)

* Project transitioned from Google to trustedfirmware.orgin May 2020.
 Normal world Hypervisor augmented to an FF-A secure partitioning kernel (aka SPM).

* The project is self contained with source code, test framework (incl. Linux dependency),
test cases, Cl scripts.

 Build systemis gn (https://gn.googlesource.com/gn/) + ninja (https://ninja-build.org/)

Split in submodules
* https://git.trustedfirmware.org/hafnium
* Hafnium (top level), driver, prebuilts, project/reference, dtc, googletest, linux
* Cloning the top level project and all submodules is necessary to build and test.

3 © 2021 Arm 0 rm

https://gn.googlesource.com/gn/
https://ninja-build.org/
https://git.trustedfirmware.org/hafnium

Hafnium build system (recap)

* Prebuilts submodule contains a mix of x86_64 and Aarch64 binaries
* Toolchains (x86 64 clang + gcc), build tools (x86_64), test binaries (AArch64) etc.

* Developer and production needs
e Build all: Hypervisor+SPMC+test framework and tests (make PROJECT=reference)

* Run tests (kokoro/test.sh and kokoro/test_spmc.sh)
* Build all, run tests, run checkers (kokoro/build.sh). Used by jenkins. Vote at each
patch submission.

* Builds 10+ targetsin one go

* secure_aem_v8a_fvp clang, secure_aem v8a fvp vhe clang, secure_tc _clang, aem v8a fvp clang,
aarch64 _linux_clang, aem_v8a_fvp_vhe clang, android_aarch64 clang, host_fake clang,
gemu_aarch64_clang, gemu_aarch64 _vhe clang, rpi4_clang

4 © 2021 Arm 0 rm

Problem statement

* This design worked great during project bring up through 2020.
* Inherited the project legacy (hardly scalable)
 Static LLVM/gcc toolchains stored in the repo (ensures "reproducibility").
e Supports x86 64 host only.
* Hardcoded tools paths in build files.
* New requirements emerging in 2021
 Hafnium component productization (Total Compute, Yocto...)
* Build Hafnium on Arm host.
* Favor SPMC vs Hypervisor.
 Dependency to 3rd party projects (googletest, dtc, linux...)
* Prebuilt submodule is very large.
* Clone and build time can be improved.

5 © 2021 Arm 0 rm

Q4'21 upstream changes

Clang 9 to clang 12 migration
* Fixed clang build/tidy errors hit with recent toolchain.
* LLVM toolchain in prebuilt still required by the Cl. "Reproducible builds".
e Regular upgrades sourced from Android repo.
Removed gcc dependency.
Alternate (out of tree) tools paths
* ninja and gn binaries can be provided though make command.
* dtc binary provided through PATH
Alternate (out of tree) toolchain
* Provided through PATH
* Mostly tested with official LLVM stock builds
https://releases.llvm.org/download.html
* Permits using a Yocto provided toolchain.
The above permits building on Aarch64 host with a recent toolchain.

6 © 2021 Arm G rm

https://releases.llvm.org/download.html

Proposals for next steps

* Reduce the prebuilt submodule footprint
* Remove LLVM and gcc from prebuilt (1.5GB)
* Developer or Jenkins/Cl environment provides the LLVM toolchain to PATH.
* Build SPMC targets independently
* Create project/spmc submodule
* New submodule git tree (hafnium/project/spmc)
* SPMC build only, not building the test framework
* Or SPMC + tests baked by kokoro/test_spmc.h
* Keep project/reference
* Still builds all targets or only the Hypervisor targets.
* Use a TARGET option on build command line.
* e.g.secure_aem_v8a fvp clang
* Reduce dependency to 3rd party submodules (used by test framework)
* dtc, googletest, linux

7 © 2021 Arm a rm

q rm Thank You
Danke

Gracias
157149

+ + + + + + + + + + &ij§t5 +

Asante

A AFE LI}

.) . , . Yo Jdiq ,
Kiitos
B

SRISI
©2021 Arm N TN

+ + + + + + + + + + + +

+

© 2021 Arm

+ + + -

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured maX be trademarks of their respective owners.

+ + +
www.arm.com/company/policies/trademarks

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

