
Jumpstarting MISRA compliance via
the integration of static analysis
into Open Source CI systems: best
practices and key elements from
TrustedFirmware.org

Executive Summary

Introduction
TrustedFirmware.org is well aware of the challenges involved in meeting the needs of the
users and regulatory agencies and how complicated it has become to support leading edge
secure technologies that are required to meet the requirements of modern systems.
Examples can be found in the evolution of the Arm architecture, with the Armv9 revision
introducing various security enhancements around memory safety and confidential
computing.

The endeavour to properly develop, integrate and validate the most privileged system
software in a way that is ready to pass compliance requirements is not for the lighthearted.
But, thanks to TrustedFirmware.org, reference implementations are available. These
implementations are integrated and validated on “real” hardware platforms. These
permissively-licensed Open Source reference implementations provide a valuable starting
point for solution and platform providers alike. Providers can leverage these implementations
vs attempting to develop such a complex secure software stack from scratch, thus allowing
providers to spend more of their resources on feature differentiation.

With it becoming apparent that TrustedFirmware.org is primarily deployed in
Mobile/Cloud/Embedded-IoT segments, there is also the need in providing a valuable
jumpstart for Platform/Solution providers who are leveraging the code in industrial, medical,
automotive, and other solutions requiring platform level regulatory compliance. An example
in ensuring TrustedFirmware projects provide the most value as a reference platform in such

October, 2023 1

https://tf.validation.linaro.org/scheduler/device_types
https://ci.trustedfirmware.org/


environments has been the inclusion of MISRA compliance testing. This led
TrustedFirmware.org to the partnership with BUGSENG and the integration of ECLAIR,
BUGSENG’s high-quality compliance tool.

C is a powerful language to be handled with care
The C programming language has been in use for half a century and remains one of the
most utilised programming languages. The reasons behind this longevity are compelling: C
allows the generation of fast compiled code for any architecture, it is standardised by ISO,
there is a wide availability of tools and libraries and a long history of application, including in
safety-critical industries. Yet, programming in unrestricted C is known to be dangerous. The
main reasons are:

1. The language has many aspects that are not fully defined. In turn this is the
downside of C’s important advantages:

a. speed of compiled code is obtained at the expense of directly mapping
high-level constructs to machine instructions that have different semantics on
different architectures (e.g., this is why shifting signed integers is not fully
defined);

b. speed of compiled code is also a consequence of the lack of run-time error
checking;

c. ISO standardisation and wide availability of compilers from different vendors
implies different compilers implement some parts of the language differently
from one another.

2. Terseness of the language, which is a good thing, has the downside that C is easily
abused and misunderstood. Implicit conversions are governed by quite intricate
rules, which many programmers do not know in enough detail. The wide supply of
predefined operators, with precedence and associativity rules that may surprise
developers, and of control-flow constructs quite often result in programs that are
difficult to understand and, thus, opaque to peer review.

In the course of 2022, around 250,000 CVEs (security vulnerabilities) have been filed, and
around half of those concern C code. This state of affairs is pushing regulators to adopt
stricter rules with the objective of making safety and security of software-based systems a
priority (see, e.g., Stop Passing the Buck on Cybersecurity: Why Companies Must Build
Safety Into Tech Products).
While these call-to-actions are driven by the need of facing rampant cybersecurity threats,
safety is also a primary concern. Functional safety standards in all industry sectors, such as
IEC 61508 (general), ISO 26262 (automotive), CENELEC EN 50128 (railways), DO-178C
(aerospace), IEC 60880 (nuclear power), and IEC 62304 (medical devices) have been
developed to tackle the issue of programming language issues for decades: the pragmatic
solution identified by the industry is called language subsetting: in essence, when
programming critical systems, only the safer subsets of programming languages are used.
This applies to all languages, not just C. When it comes to C, MISRA C is the most
authoritative C subset for the development of safety- and security-critical software.

October, 2023 2

https://misra.org.uk/
https://www.bugseng.com/eclair
https://www.foreignaffairs.com/united-states/stop-passing-buck-cybersecurity
https://www.foreignaffairs.com/united-states/stop-passing-buck-cybersecurity


MISRA C
1973 is the year when the essential elements of what is today called C were completed; the
compiler was also strong enough for Dennis Ritchie and Ken Thompson to rewrite the Unix
kernel for the PDP-11 in C during the summer of that year.
So C is 50 years old, but MISRA C, whose first edition is dated July 1998, is 25 years old. As
C evolved and matured along with ISO standardisation (C90, C99, C11, C18 and, soon,
C2x), MISRA C evolved in order to follow the language evolution and to strengthen the
guarantees provided to the producers of critical software (MISRA C:1998 was followed by
MISRA C:2004, MISRA C:2012 and MISRA C:2023, along with several addenda,
amendments and corrigenda that were published over the years).
MISRA C defines a subset of the C programming language that greatly reduces or mitigates
the possibility of committing programming mistakes that may impact the safety and security
of devices containing software (i.e., nowadays, all devices!).
The MISRA C subset of C is defined by means of coding guidelines. In turn, guidelines are
divided into directives and rules: for the latter, compliance depends only on the code and on
the way the particular compiler used (along with the options with which it is used) resolves
the many implementation-defined aspects of the language. So, if all the code is available
(but often, libraries are not provided in source format), if all the code is written in C (but for
many projects some code is written in assembly) and if it was not for undecidable program
properties, MISRA C rules could be checked in a fully automatic way by means of static
analysis tools. Differently from rules, compliance with the MISRA C directives does not
depend only on the code and on the compilation process. Design, specification and even the
programmer's intentions and knowledge have to be taken into account. Thus, in the case of
directives, tools may assist in checking compliance if they are provided with the extra
information. MISRA C Directive 1.1 is a good example which states

Dir 1.1 Any implementation-defined behaviour on which the output of the program
depends shall be documented and understood

C18 (ISO/IEC 9899:2018) has 119 implementation-defined behaviours: they cover the size
and alignment of data objects, whether the plain char type is signed or unsigned, the details
of the representation of and access to bitfields, and lots of other things. Most compilers allow
controlling some implementation-defined behaviours by means of compilation options. It is
clearly impossible to reliably program in C without an understanding of how the used
compiler with the used compilation options resolves the implementation-defined behaviours.
While a static analysis tool cannot of course judge the adequacy of the documentation, let
alone its understanding on the part of the involved personnel, a tool like ECLAIR (see the
dedicated section later in the paper) can automatically detect which such behaviours may
influence the output of the program. For typical embedded system software, they are on the
order of 30 to 40, which implies the remaining 80 to 90 need not be documented.
A very important MISRA C rule prescribes the use of standard C:

Rule 1.1 The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation’s translation limits

October, 2023 3



At first sight, this rule might seem surprising: isn’t it the task of the compiler to make sure text
that is not C is rejected? In fact, compilers cannot be trusted: they often do accept constructs
not defined by the language. For instance, GCC accepts the following code:

extern void f(char *p);

void g(void);

void g(void) {

char a[9] = {};

return f(a);

}

This contains an empty initializer and returning of a void expression, which are undefined in
all published versions of the C standard. Nonetheless the GCC documentation does not
document them as extensions, so they cannot be accepted as such and Rule 1.1 is violated
here. Another important aspect of Rule 1.1 concerns the fact that a conforming compiler
does not need to generate a diagnostic when a translation limit (such as the maximum
number of cases in a switch statement, or the maximum level of file inclusion nesting) is
exceeded, and an executable may be generated that does not work as expected.
Note that language extensions documented as such and supported by the compiler are
allowed by MISRA C, even though advisory Rule 1.2 suggests treating them with care:
language features that are outside the supported versions of C have not been considered
when developing the MISRA guidelines; moreover, extensions will pose problems when
compiler qualification is required (who will provide a sufficient set of test cases for the
extensions?).

Another interesting MISRA C guideline is

Rule 3.2 Line-splicing shall not be used in // comments

Line-splicing is when a back-slash at the end of a line causes two physical source lines of
code to be merged into one logical source line of code. If a // commented line ends with a
back-slash followed by a new-line, then the following line is part of the comment, and, if
this was not intended, an important line of code may be lost. The following example shows
how a path separator at the end of the comment may accidentally comment out the next line
of code:

// see critical.* in c:\project\src\

critical_function();

Mandatory MISRA C Rule 9.1 says we must ensure that stack variables always have a value
when they are read:

October, 2023 4



Rule 9.1 The value of an object with automatic storage duration shall not
be read before it has been set

Whereas objects with static storage duration are automatically initialised to zero unless
initialised explicitly, objects with automatic storage duration (i.e., those allocated on the
stack) are not automatically initialised and can therefore have indeterminate values: attempts
of reading indeterminate values are undefined behaviour. In the following example, if
function f() is ever called with a negative actual parameter, the behaviour is undefined,
which means the program can just do anything:

int32_t f(int32_t a) {

int32_t x ;

if (a >= 0) {

x = 2;

}

return x;

}

Note that undefined behaviour is a technical term coming from the C Standard: “behaviour,
upon use of a non-portable or erroneous program construct or of erroneous data, for which
this International Standard imposes no requirements,” where “no requirements” means
absolutely no requirements: crashing, erratic behaviour of any kind, formatting the hard disk,
… a standard-conforming compiler can produce code that really can do anything. Normally, it
means the compiler assumes undefined behaviour does not happen; if it does happen, the
programmer has violated the contract with the language and any warranty is void. In other
words, a program that has undefined behaviour is totally unpredictable.
Another class of circumstances where the meaning of C programs is not fully defined is
called unspecified behaviour: this is when there are two or more options to implement one
language aspect and the C Standard gives the compiler freedom to make a choice in each
individual instance (which implies that compiler does not have to document the choice and
does not have to ensure any sort of consistency when the choice has to be made
repeatedly). For example, the order in which subexpressions are evaluated and the order in
which side effects take place is unspecified for most operators. For instance, the following
program might print ‘Hello world! Hello world! ’ or ‘world! Hello world!
Hello ’ or ‘world! Hello Hello world! ’ or ‘Hello world! world! Hello ’:

#include <stdio.h>

int hello(void) {

return printf ("Hello ");

}

int world(void) {

return printf ("world! ");

}

October, 2023 5



int main () {

int x = hello() + world()

int y = hello() + world();

return x + y;

}

Compliance with the following MISRA C guideline avoids this issue:

Rule 13.2 The value of an expression and its persistent side effects shall be the
same under all permitted evaluation orders

The rule also prevents some instances where lack of sequentialization leads to undefined
behaviour:

● modifying an object more than once between two sequence points (for instance, in
the expression ++y + ++y);

● modifying and reading an object between two sequence points, unless reading is
necessary to store in the object (for instance, in the expression ++y + y).

The order in which actual parameter expressions are evaluated in function calls is also
unspecified. As reading volatile variables is a persistent side effect, the following
program has unspecified behaviour and violates Rule 13.2:

extern volatile uint16_t TCNT1;

extern volatile uint16_t TCNT2;

extern int32_t f(uint16_t tc1, uint16_t tc2);

int main (void) {

return f(TCNT1 , TCNT2);

}

The problem can be easily avoided by the introduction of temporary variables and leveraging
the fact that statement-terminating semicolons are sequence points:

extern volatile uint16_t TCNT1;

extern volatile uint16_t TCNT2;

extern int32_t f(uint16_t tc1, uint16_t tc2);

int main (void) {

uint16_t tc1 = TCNT1;

uint16_t tc2 = TCNT2;

return f(tc1, tc2);

}

The selection of guidelines that has just been presented is representative of the spirit of
MISRA C: this has to do with error prevention more than bug finding. While violations of

October, 2023 6



certain guidelines (such as Rule 9.1) clearly represent programming mistakes, in the case of
other guidelines violations may or may not be defects depending on the programmer's
intentions. In all cases, violations are an invitation to reflect on things like: “Did we really
intend to do this?”, or “Is this thing I wrote and the way I wrote it understandable by my
colleagues or by myself one month from now?”, or “What if this function is called with an
argument such-and-such?” This is why the deviation process (whereby justifiable
non-compliances can be authorised and recorded as deviations) is an essential part of
MISRA C: the point of a MISRA C guideline is not “You should not do that”' but, rather,
“This could be dangerous: you may only do that if (1) it is needed, (2) it is safe, and (3) a
peer can easily and quickly be convinced of both (1) and (2).” In fact, when a high-quality
MISRA-checking tool is available, a useful way of thinking about MISRA C and the
processes around it is to consider them as an effective way of conducting a guided peer
review to rule out most C language traps and pitfalls.

TrustedFirmware Open CI and ECLAIR
TrustedFirmware uses a comprehensive Continuous Integration (CI) system “Open CI.” The
system is completely public, allowing contributors across different companies and around the
world to participate in TrustedFirmware development and testing. The system runs over
3000 builds across several TrustedFirmware Projects (such as TF-A, TF-M, and MBed TLS)
daily, and as such is quite busy and thorough. In addition to performing daily builds, OpenCI
also runs a number of static and dynamic checks, ranging from simple code convention
compliance to code coverage analysis.

One of the features that members of the TrustedFirmware.org project prioritised for inclusion
into Open CI over the last 1-2 years has been a comprehensive MISRA checker. In the
context of product releases, demonstrating adherence to MISRA standards has become an
essential requirement, especially in safety-critical industries like automotive, medical, rail,
and aviation, among others. Ensuring demonstrable MISRA compliance entails more than
just running an automated compliance checker; it encompasses various aspects such as
documentation, training, process planning, configuration & change management, and
product testing, among others. This enhances the processes and tooling already in place
within Open CI that can contribute to MISRA compliance such as source code version
control (git), code reviews (Gerrit), documentation, process management, and testing. It is
still ultimately left to the product developer to attain MISRA compliance.

One very important aspect of demonstrating compliance involves utilising MISRA static code
analysis tooling on the source codebase. Through a partnership with BUGSENG and the
integration of ECLAIR into Open CI, TrustedFirmware now offers support for this capability.
Again, it's important to note that the tooling itself doesn't magically make a product fully
MISRA-compliant when using TrustedFirmware Open Source software components.
However, it provides a strong foundation by conducting baseline MISRA analysis supporting
the software developer teams in refactoring TrustedFirmware.org projects to meet the
requirements of this baseline MISRA scan. This facility is now provided for both TF-A and
TF-M projects and may be extended to other projects supported by TrustedFirmware.org.
This new service adds to TrustedFirmware.org projects being a valuable starting point when

October, 2023 7



MISRA compliance is needed for companies seeking to incorporate TrustedFirmware.org
code into their products.

ECLAIR has a number of features which make it an excellent choice for using in a CI
system:

● First class-support for using in batch mode (all tools support operations from the
command line, comprehensive text-based configuration files, etc.).

● Analysis and report generation are separate stages allowing for flexibility in
structuring CI jobs.

● As much as possible information about the source codebase is captured during the
analysis phase, while additional filtering can be applied at report generation phase.

● Reports produced are standalone - either plain text, or HTML-based. HTML reports
are actually dynamic, offering UI with diagramming, filtering capabilities, source code
locations preview, etc. - all this without 3rd-party software, with just a user’s web
browser.

From the implementation point of view, the Open CI system consists of Jenkins CI server
software, with most of the individual CI jobs running in Docker containers. ECLAIR
integration into Open CI thus largely involves preparing a suitable container image to run in.
One of the challenges was support for ECLAIR licensing model - being proprietary software,
ECLAIR requires transient connection to a networked licence server to perform its
operations. Fortunately, there are different licensing modes, including accommodating
running in parallelized batch-mode CI systems.

There were several steps to perform in order to enable ECLAIR in Open CI. Normally,
MISRA analysis is applied for the intended goal of achieving MISRA compliance and
certification. The certification is generally applied to a “product” having a particular
certification requirement with a well-defined set of components on a codebase of a particular
version, with specific configuration settings, and built with a specific compiler for a specific
hardware platform. TrustedFirmware, on the other hand, is essentially a flexible,
highly-configurable framework, supporting many features and hardware platforms. Out of
this framework, a number of specific products can be built by downstream vendors. This is
achieved by tuning various parameters mentioned above. Thus, MISRA compliance at the
level of the TrustedFirmware upstream project is not the goal, nor is it the aim of the project.
Instead, the aims are to:

● establish and maintain a baseline for a specific level of MISRA compliance for the
codebase;

● provide means for project maintainers and contributors to assess and maintain this
level of compliance;

● encourage contributors to improve MISRA compliance of the existing codebase;
● provide to the downstream vendors guidelines, sample setup, and best practices

towards working on MISRA compliance and product certification, if they choose so.

The current compliance goal of the project is to be clear of “mandatory” MISRA issues (note
that MISRA categorises its rules as mandatory, required, or advisory). To help assess this
overall goal, Open CI provides a baseline daily build of the entire codebase, with suitable
reports published. The results can be accessed via the following link:
https://ci.trustedfirmware.org/job/tf-a-eclair-daily/ .

October, 2023 8

https://ci.trustedfirmware.org/job/tf-a-eclair-daily/


In addition to these baseline builds of the entire codebase, Open CI provides differential (or
“delta”) reports for specific patches submitted by the contributors for inclusion into the
project. This is actually a fairly unique and important feature of Open CI, enabled by
ECLAIR, which has the ability to create such a differential report from the analyses of two
different revisions of the codebase. Internally what happens is that the codebase is analysed
without the patch, then with the patch applied, and then ECLAIR produces a differential report
capturing the effect of the patch on MISRA compliance. The usefulness of such a report
cannot be overestimated. As the TrustedFirmware codebase is quite big and has a long
history, it has many MISRA issues still active (as mentioned above, only mandatory issues
were completely addressed so far). When reviewing changes introduced by a patch, seeing
these background/residue issues would complicate assessing what effect the patch has on
MISRA compliance, and why it is very helpful to see issues only related to the changes in
the patch. In support of the goal of not having any mandatory MISRA issues in the
codebase, this prevents the projects from introducing them via new patches. But with the
delta analysis feature, both contributors and maintainers can also review violation of
required/advisory guidelines and avoid introducing them whenever possible, to at least not
grow their number. Additionally, developers working on gradually resolving these issues in
the existing codebase, have immediate per-patch feedback that their work goes in the right
direction. Examples of the delta reports can be seen via this link:
https://ci.trustedfirmware.org/job/tf-a-eclair-delta/ . Each delta analysis CI job also posts a
summary report back to the patch review system (Gerrit), so that the original submitter and
reviewers have easy access to it.

Summing up, the MISRA testing setup has integrated well into the existing TrustedFirmware
Open CI infrastructure, providing both a full report for the entire codebase, and a “delta”
report for proposed changes. This will allow the project to maintain its existing level of
MISRA compliance and gradually improve it over time. This results in a great headstart for
downstream vendors who would like to pursue MISRA compliance for their
TrustedFirmware-based product.

About the ECLAIR Software Verification Platform
The ECLAIR Software Verification Platform, ECLAIR for short, is a powerful platform for the
automatic verification of C and C++ programs by BUGSENG. ECLAIR has a modern design
implementing state-of-the-art technology that gives it a significant competitive advantage on
a number of accounts. The platform has many applications:

● coding rule validation, starting with the MISRA coding standards of course;
● metrics: the HIS metrics plus many more are supported that allow software quality

to be assessed in terms of complexity, testability, readability and maintainability;
● bug finding based on a very fast static analyzer able to detect and report bugs and

weaknesses that can lead to crashes, misbehaviors, and security vulnerabilities;
● stylistic guidelines from BARR-C:2018;
● integrated requirements management tool and support for the bidirectional

traceability between requirements/specifications, code and test cases;
● automatic verification of architectural constraints at the software level, instrumental in

providing evidence of independence/isolation/segregation/freedom from interference,
as mandated by many standards of functional safety and cybersecurity;

October, 2023 9

https://ci.trustedfirmware.org/job/tf-a-eclair-delta/


● dynamic analysis and automatic generation of test cases (not commercialised yet).

One of the notable features of ECLAIR consists in the fact that the hardest part of the
configuration, namely the adaptation to the compiler toolchain and the particular language
dialect(s) used in the project, is fully automatic: ECLAIR detects, without user intervention,
all the implementation-defined behaviours, including predefined macros, taking into account
all options given to the compiler, assembler, linker and librarian. This is particularly suited to
open-source projects where code is translated by means of different toolchains and with
different options, with both the toolchains and options being updated relatively frequently:
with ECLAIR any change in the toolchains or the build procedures is automatically taken into
account with total accuracy.
One of the ways in which the design of ECLAIR is crucial in helping developers quickly
address its findings concerns the integration with IDEs (all major IDE families are supported:
Eclipse, Visual Studio, Visual Studio Code, NetBeans, CLion, …) and with CI/CD systems,
including Jenkins, GitLab and GitHub. In particular, with ECLAIR all users have access to
fully detailed reports without installing anything; yet, all users have access to private,
sophisticated filters (i.e., locally-stored and independent from one another) so that each one
of them has the view that is most suitable for the task at hand. Still, using the inexpensive
ECLAIR Client Kit, users can work within their favourite IDE for extra productivity.

ECLAIR is certified by TÜV SÜD for use in safety-related development according to
● IEC 61508:2010 for any SIL;
● ISO 26262:2018 for any ASIL;
● EN 50128:2011 + A2:2020 for any SIL;
● IEC 62304:2006 + Amd 1:2015 for any software safety class;
● ISO 25119:2018 + Amd 1:2020] for any SRL.

"ECLAIR has provided a very valuable asset to TrustedFirmware.org, its members, and the
Community” said Don Harbin, TrustedFirmware.org Community Manager. “The recent
release of MISRA testing into our Production CI is the culmination of joint efforts and
collaboration between BUGSENG and the Open CI development teams.”

"The integration of ECLAIR into TrustedFirmware's OpenCI constitutes a reference
implementation that many organisations can take inspiration from" said Abramo Bagnara,
BUGSENG CTO.

October, 2023 10



About TrustedFirmware.org
TrustedFirmware.org is an open source project implementing foundational software
components for creating secure devices. Trusted Firmware provides a reference
implementation of secure software for processors implementing both the A-Profile and
M-Profile Arm architecture. It provides SoC developers and OEMs with a reference trusted
codebase complying with the relevant Arm specifications. Trusted Firmware code is the
preferred implementation of Arm specifications, allowing quick and easy porting to modern
SoCs and platforms. This forms the foundations of a Trusted Execution Environment (TEE)
on application processors, or the Secure Processing Environment (SPE) of microcontrollers.
Visit: https://www.trustedfirmware.org/

About BUGSENG
BUGSENG is a leading provider of solutions and services for software verification.
BUGSENG’s ECLAIR Software Verification Platform has been designed to help engineers
develop higher-quality software, effectively, by changing the traditional rules of the game.
BUGSENG consulting services help industry leaders improving their development processes
and complying with functional-safety standards. BUGSENG is also a renowned resource for
advanced professional training. Visit: http://BUGSENG.com

October, 2023 11

https://www.trustedfirmware.org/
https://www.bugseng.com/services/consulting
https://www.bugseng.com/services/training
http://bugseng.com/

