arm

NUMA Aware

" | Rohit Mathew
18th July 2024

© 2024 Arm

Agenda

-- Problem

« Overview
- PER-CPU Objects

-~ Proposal — NUMA Aware PER-CPU Framework

- How do we do it?

- Platform’s responsibility

- Definer Interface

- Accessor Interface

- Optimization 1 - tpidr_el3 magic

- Optimization 2 — avoid cache thrashing
- Stack migration

- Interface variants

2 ©2024 Arm a r’m

Problem
Overview

-- Homogeneous multichip platforms have physically segregated SRAM in each chiplet

-- TF-A runtime image size for multichip can exceeds a single SRAM size
- Can we reduce the runtime Image size on the primary SRAM?

-- Additionally, CPUs from non-primary chiplet deals with a NUMA latency due to cross

chip access
- Can we move parts of the Image to the SRAM local to CPU in context?

o

arm

3 © 2024 Arm

Problem
PER-CPU Objects

The NUMA problem

-- TF-A has a lot of global objects that are per CPU.

« RMM context, NS PSCI context, SPMD context
etc

- part of BSS which is not loaded explicitly, but
forms part of the runtime.

-— CPU objects are re-used through-out the

lifetime of the system

- Cross chip Read/write/snoops would add in
NUMA latency

4 © 2024 Arm

The Storage problem

SRAM End
BL31 XLAT
BL31 BSS I
BL31 Stack NOLOAD start
BL31 Data
BL31 RO
BL31 code
SRAM start

arm

Proposal : NUMA Aware PER-CPU Framework

How do we do it?

-- Accessor Interface would help with accessing these objects.
-- For single chiplet systems, there is no change in how things works™*

-- For multi-chiplet systems, PER-CPU framework would deal with allocating globals
spread across SRAMs

-- A new section called “.per_cpu” would be introduced just for the multichip systems to
tie PER-CPU globals in a single chip

**Certain optimizations can bring changes for single chip as well.

5 © 2024 Arm a r’m

6

Proposal : NUMA Aware PER-CPU Framework

How does it look?
Single Chip

SRAMO End

BL31 XLAT
BL31 BSS

BL31 Stack

BL31 Data
BL31 RO
BL31 code

SRAMO Start

© 2024 Arm

Multi-Chip

BL31 XLAT

BL31 .per_cpu

BL31 BSS
BL31 Stack

BL31 Data
BL31 RO
BL31 code

SRAMO End

Platform use-case

SRAMO Start

SRAM1 End

SRAM1 Start

arm

Proposal : NUMA Aware PER-CPU Framework

Platform’s Responsibility

Single chip

-- Nothing to be done.

7 © 2024 Arm

Multi-chip

-~ Set build option PER_CPU_MULTICHIP := 1
-— Setup page tables for remote regions at desired
locations.

-- Implement
°* uintptr t plat per cpu section_base(int cpu);
- This should return the address of the «.per_cpu »
section corresponding to a CPU

arm

8

Proposal : NUMA Aware PER-CPU Framework

Definer Interface

Single chip

#define DEFINE PER CPU(TYPE, NAME) \
TYPE NAME [PLATFORM CORE COUNT]

-- No changes internally

-~ Here is an example use-case -

DEFINE PER CPU(rmmd rmm context t, rmm context);

© 2024 Arm

Multi-chip

#define DEFINE PER CPU(TYPE, NAME) \
TYPE NAME [CHIPLET CORE_COUNT] \
__section (PER_CPU MULTICHIP SECTION)

-- The object is tied to a different section
(.per_cpu)

-- The number of cores have been reduced to

cores per chiplet

-— This region would be duplicated across each
chiplets SRAM.

arm

9

Proposal : NUMA Aware PER-CPU Framework

FOR_CPU_PTR accessor Interface
Single chip

#define FOR CPU_PTR(NAME, CPU) \
&NAME [CPU]

-- No changes internally

-- Here is an example use-case -

rmmd rmm context t *rmm ctx = FOR_CPU_ PTR(rmm_ context,
linear id);

-- If used in an env where multi-CPUs can
concurrently access, make sure to use proper
locking primitives!

© 2024 Arm

Multi-chip

#define PER CPU OFFSET (x) (x - PER CPU_START)

#define FOR CPU_PTR(NAME, CPU) _ extension \
((__typeof_ (&NAME([O0])) \
(plat_per cpu_ section_base (CPU) + \

PER CPU_OFFSET ((uintptr_t) &NAME [CPU%CHIPLET CORE COUNT])))

4 plat per cpu section_base isimplemented
by the platform to return the section base for the
CPU in context

+ plat per cpu section base is one way of
doing it; tpidr_el3 would be another way.

arm

Proposal : NUMA Aware PER-CPU Framework

THIS_CPU_PTR accessor Interface
Single chip Multi-chip

#define THIS CPU_ PTR (NAME) \ #define PER CPU OFFSET (x) (x - PER CPU_START)
&NAME [plat my core_pos()] #define THIS CPU_PTR(NAME) __ extension
((__typeof (&NAME[O0]))

-- No changes internally

\
\
(plat_per cpu_section base(plat my core pos()) + \
PER_CPU_OFFSET (\

)

(uintptr_ t) &NAME[plat my core pos () $CHIPLET CORE_COUNT])))

-- Here is an example use-case

rmmd rmm context t *ctx = THIS CPU_PTR(rmm_context);

10 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework
Op1l - tpidr_el3 magic

bl 6e698 <plat my core pos>

mov wl9, wO

bl 75d14 <plat per cpu section base>
and wl9, wl9, #0x3

-- Can be optimized to something as simple as

mrs x0 ,tpidr el3
add x0, x0, #0x9f8

-- This should be multi-folds faster, even faster than an access from a cached pointer in

case of a cache miss.
-- we rely on a system register to get the offset for a particular CPU
-- The unoptimized variant relies multiple memory accesses to calculate the right offset

11 © 2024 Arm a r' m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. A Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 Invalid 0x1000 Invalid 0x1000 Invalid

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

ox1000 | D1 D2 D3 D4

12 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. A Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 Invalid 0x1000 Invalid 0x1000 Invalid

TYPE NAME [CPU MAX]

Interconnect

-- This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Address Data

0x1000 | D1 D2 D3 D4

13 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
Cache Cache Cache

different CPUs to be residing on the
same cache-line

Address Data Address Data Address Data

ox1000 | DED2D3D4 0x1000 Invalid 0x1000 Invalid
e — I —— I ————

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

14 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. A Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 .D2 D3 D4 0x1000 Invalid 0x1000 Invalid

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

15 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. A Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 .D2 D3 D4 0x1000 Invalid 0x1000 Invalid

TYPE NAME [CPU MAX]

-- This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

16 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. A Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 - 0x1000 Invalid 0x1000 Invalid

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

ox1000 | D1 D2 D3 D4

17 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
Cache Cache Cache

different CPUs to be residing on the
same cache-line

Address Data Address Data Address Data

0x1000 Invalid ox000 | [liD2D3D4 0x1000 Invalid
e — I —— I ————

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

18 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. - Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 Invalid ox1000 | [l o3 D4 0x1000 Invalid

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

ox1000 | D1 D2 D3 D4

19 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. - Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 Invalid ox1000 | [l o3 D4 0x1000 Invalid

TYPE NAME [CPU MAX]

-- This introduces false sharing or
cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

20 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. - Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 Invalid 0x1000 - 0x1000 Invalid

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

21 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
Cache Cache Cache

different CPUs to be residing on the
same cache-line

Address Data Address Data Address Data

0x1000 Invalid 0x1000 Invalid oxo00 | [ID3D4
e — I —— I ————

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

0x1000 | D1 D2 D3 D4

22 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework

Op2 - Avoid Cache Thrashing

-- Contiguous arrays can cause data for
. - Cache Cache Cache
different CPUs to be residing on the
. Address Data Address Data Address Data
same cache-line
0x1000 Invalid ox1000 | Invalid oxz0o0 | [N D4

TYPE NAME [CPU MAX]

+ This introduces false sharing or

cache-thrashing where the
ownership of the cache line keeps
switching between different CPUs.

Data

Address

ox1000 | D1 D2 D3 D4

23 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework
Op2 - Avoid Cache Thrashing

-- If performance is key, modify the definition as follows
#define DEFINE_PER_CPU(TYPE, NAME) \
TYPE NAME \
__section (PER CPU MULTICHIP SECTION)

CLA boundary

-~ In the linker script,

#define PER CPU_SECTION \ N = NUM CPUs PER
.per_cpu : ALIGN(CACHE WRITEBACK GRANULE) { \ CHIPLET
__PER CPU_START UNIT = .; \

* (SORT_BY ALIGNMENT (.per cpu*)) \

__PER CPU _END UNIT = .; \

. = ALIGN (CACHE WRITEBACK GRANULE) ; \

__PER CPU _END UNIT CLA = .; \ CLA boundary_

. = ((NUM_CPUS_PER CHIPLET - 1) \ g
*(__PER CPU _END UNIT CLA - _ PER CPU_START UNIT) \ CLA boundary_

. = . + _PER CPU END UNIT _ - _ PER CPU START UNIT)\

CLA boundary

}

24 © 2024 Arm a r m

Proposal : NUMA Aware PER-CPU Framework
Op2 - Avoid Cache Thrashing

-- The extra cache-line alignment coupled with breaking down the array would avoid the
same cache-line to exist in multiple CPUs.

-- Could take up a bit more storage as alignment is costly.
-- Change in Definer and Accessor implementation. Interface should be same

-- single-chip could be kept untouched; however, this would be a better design if
performance is of priority. (Remember **)

-- multi-CPU problem and not a multi-chip one!

25 © 2024 Arm a r' m

Proposal : NUMA Aware PER-CPU Framework

Migration of Stack

-- Stack as of today is using its own section “.tzfw_normal_stacks” and is a big consumer
like the other context globals.

-- Plan to move the stack to the PER-CPU framework as we progress with the migration

- At a high level this would mean:

- Removing the stack section from BL31 linker script
- Stack would now be defined by the framework
- SP is switched via the accessor interface

26 © 2024 Arm

arm

Proposal : NUMA Aware PER-CPU Framework

Interface variants

-- For both ror_cpu_prr and muzs_ceu_prr, it would be beneficial to have a non-pointer/object

accessor interface (ror_ceu/taIs ceu).
° Eg: FOR CPU(spm_core context, core_id) .state = SPMC_STATE OFF;

-- Definer interface should also support aligned definitions, for definitions requiring

tighter alighments.
° Eg: __aligned (64) some_struct t some_ struct[PLATFORM CORE COUNT] ;

- Could be defined as bEFINE PER CPU ALIGNED (some struct t, some struct, 64)
- .per_cpu section has to be aligned to the max of (SORT_BY_ALIGNEMENT(.per_cpu))

-- Support for arrays
* Eg: uint64_t shadow registers[16] [PLATFORM CORE_COUNT] ;

27 © 2024 Arm a r' m

Proposal : NUMA Aware PER-CPU Framework

Interface variants

-- Support for initialized PER-CPU variables could be a use-case we should support

. Eg: ./plat/st/common/stm32mp gic.c:static unsigned int target mask array[PLATFORM CORE COUNT] = {1,
2};

-- Possibly useful to add support in BL32

. Eg: ./bl32/tsp/tsp _timer.c:static timer context t pcpu timer context[PLATFORM CORE COUNT];

-- This would be a long-term activity where less crucial objects can be migrated down the
line.

28 © 2024 Arm a r' m

arm

© 2024 Arm

Thank You
BEILE
Gracias
Grazie

157 159
HYHED
Asante
Merci

LA LT

Ygdic
Kiitos

) S5
SEIEIG

AR
c,ﬁézgo:PCSan

© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

	Slide 1: NUMA Aware PER-CPU Framework
	Slide 2: Agenda
	Slide 3: Problem
	Slide 4: Problem
	Slide 5: Proposal : NUMA Aware PER-CPU Framework
	Slide 6: Proposal : NUMA Aware PER-CPU Framework
	Slide 7: Proposal : NUMA Aware PER-CPU Framework
	Slide 8: Proposal : NUMA Aware PER-CPU Framework
	Slide 9: Proposal : NUMA Aware PER-CPU Framework
	Slide 10: Proposal : NUMA Aware PER-CPU Framework
	Slide 11: Proposal : NUMA Aware PER-CPU Framework
	Slide 12: Proposal : NUMA Aware PER-CPU Framework
	Slide 13: Proposal : NUMA Aware PER-CPU Framework
	Slide 14: Proposal : NUMA Aware PER-CPU Framework
	Slide 15: Proposal : NUMA Aware PER-CPU Framework
	Slide 16: Proposal : NUMA Aware PER-CPU Framework
	Slide 17: Proposal : NUMA Aware PER-CPU Framework
	Slide 18: Proposal : NUMA Aware PER-CPU Framework
	Slide 19: Proposal : NUMA Aware PER-CPU Framework
	Slide 20: Proposal : NUMA Aware PER-CPU Framework
	Slide 21: Proposal : NUMA Aware PER-CPU Framework
	Slide 22: Proposal : NUMA Aware PER-CPU Framework
	Slide 23: Proposal : NUMA Aware PER-CPU Framework
	Slide 24: Proposal : NUMA Aware PER-CPU Framework
	Slide 25: Proposal : NUMA Aware PER-CPU Framework
	Slide 26: Proposal : NUMA Aware PER-CPU Framework
	Slide 27: Proposal : NUMA Aware PER-CPU Framework
	Slide 28: Proposal : NUMA Aware PER-CPU Framework
	Slide 29
	Slide 30

