
© 2021 Arm

David Wang
27 May 2021

TF-M
Non-Secure Client 

Extension

For TrustZone Based Implementation



2 © 2021 Arm

Background

• The RTOS Context Management API 
(a.k.a. TZ API) is not design for NS 
client ID management.

• NS client IDs are not assigned and 
partially managed by RTOS kernel

• Has limitations to ensure the same ID is 
assigned to the same thread after reboot

• TF-M implemented a simple example 
of NS client ID generation in library 
model. It’s disabled by default. Ideally 
this work should be done by RTOS 
kernel who has the position to 
manage NS client context.



3 © 2021 Arm

From PSA Firmware Framework Specification
• “An NSPE client_id is provided by the NSPE OS via the SPM or directly by the SPM”

• If SPM provides the non-secure client ID
• “the same negative client_id must be used for all connections.”

• If NSPE provides the non-secure client ID
“
• The NSPE operating system must provide the client_id for each connection.
• The SPM must verify that the provided client_id is an NSPE client_id.
“



4 © 2021 Arm

Single NS Client ID - Single Secure Context

• Current default implementation
• SPM provides the NS client ID (-1)
• A service call from NS client is a 

blocking operation. i.e. A new
service call is allowed only when 
current call finished – protected 
by RTOS mutex

NS Client A

NS Client B NS Client Context
(ID -1)

NS Client C

NSPE (RTOS) SPE (TF-M)



5 © 2021 Arm

Multiple NS Client ID – Single Secure Context

• NSPE provides the NS Client ID
• A service call from NS client is still 

a blocking operation as there is 
only one NS client context 
available.

NS Client A

NS Client B NS Client Context
(ID “A”/”B”/”C”)

NS Client C

NSPE (RTOS) SPE (TF-M)

NS Client ID “A”

NS Client ID “B”

NS Client ID “C”



6 © 2021 Arm

Multiple NS Client ID - Multiple Secure Context (Future Plan)

• NSPE provides the NS Client ID 
which will be stored in NS Client 
Context

• Need Multiple Secure Context 
support

NS Client A
NS Client ID “A”

NS Client Context X
(ID “A”)

NS Client B
NS Client ID “B”

NS Client Context Y
(ID “B”)

NSPE (RTOS) SPE (TF-M)



7 © 2021 Arm

Non-secure Client Context Mapping

SPM

Task A

NSPE (RTOS) SPE (TF-M)

NS Client Context

Task B NS Client Context

Task C NS Client Context

Secure 
Partition

NSID

NSID NSID

NSID

NSID

Task A
(Running) NS Client Context



8 © 2021 Arm

Problem of N - N Mapping

• The mapping of NS client and
secure side context is usually 
static

• Typically, NS client (task) won’t 
release the assigned context in its 
lifecycle

• If the NS task doesn’t use secure 
service frequently, then the 
efficiency of secure context might 
be low

NSPE (RTOS) SPE (TF-M)

NS Task A NS Client Context X

NS Task B NS Client Context Y

NS Task N NS Client Context Z

… …



9 © 2021 Arm

How To Support “Single Context – Multi NSID” Scenario?

• Statically allocate different context 
for each NS client
• Memory footprint
• Predefine supported numbers of NSID

NS Client A

NS Client B NS Client Context
(ID “A”/”B”/”C”)

NS Client C

NSPE (RTOS) SPE (TF-M)

NS Client ID “A”

NS Client ID “B”

NS Client ID “C”



10 © 2021 Arm

Group Based NS Client Context

• Threads in the same group share 
one NS client context

• A thread waits for service call 
from other threads in the same 
group finished before calling a 
secure service – (e.g., share the 
existing OS mutex mechanism)

• A group takes the context until all
threads in the group “release” the
context.

NS Thread A

NS Thread B NS Client Context
(ID “A”/”B”/”C”)

NS Thread C

NSPE (RTOS) SPE (TF-M)

Group X

NS Thread E

NS Thread F NS Client Context
(ID “E”/”F”)

Group Y

NS Thread G NS Client Context
(ID “G”)Group Z



11 © 2021 Arm

How Could This Work for Use Scenarios

• “Single Context Multi NSID”, N – 1 
Mapping

• Use same group ID

NS Task A

NS Task B NS Client Context
(ID “A”/”B”/”C”)

NS Task C

NSPE (RTOS) SPE (TF-M)

NS Client ID “A”

NS Client ID “B”

NS Client ID “C”

Group 0

Thread 1

Thread 2

Thread 3

NS Task A NS Client Context X

NS Task B NS Client Context Y

NS Task N NS Client Context Z

… …

Group 1

Group 2

Group n

…

• N - N mapping
• Use different group IDs for each

task

• M - N mapping is possible too



12 © 2021 Arm

TF-M NS Client Extension API Prototype - Draft
• uint32_t ns_client_acquire_ctx(uint16_t groud_id);
• uint32_t ns_client_release_ctx(uint32_t token);
• uint32_t ns_client_load_ctx(uint32_t token, int32_t nsid);
• uint32_t ns_client_save_ctx(uint32_t token);



13 © 2021 Arm

Example For N – 1 Mapping
NSPE (RTOS) SPE (TF-M)

Task A

NS Client Contextacquire_ctx

Kernel

group_id(1)
group_id(1)

load_ctx

token(1)

nsid(-1)

token(1)
nsid(-1)

Task B

acquire_ctx

group_id(1)

token(1)

load_ctx

token(1)

nsid(-2)

nsid(-2)

allocate_ctx

service call

Secure Service

service call

nsid(-1)

nsid(-2)

allocate_ctx

Group 1



14 © 2021 Arm

Typical NS Client Extension Modules

RTOS Kernel SPM

Task A

NSPE (RTOS) SPE (TF-M)

Privileged
Unprivileged

NS Client ID 
Manager

NS Client 
Context

Manager

Context 
Management 

Broker

Request NSID

RTOS Secure 
Context API

• NS Client Context Manager
• In TF-M
• The implementation of NS Client Extension 

API

• NS Client ID Manager (provide example)
• In RTOS Kernel
• Manage the NSID assignment and the 

mapping to NS threads

• Context Management Broker (provide 
example)

• In RTOS Kernel
• Interface to RTOS Secure Context API (if 

exists)
• Call NS Client Extension API when NS task 

scheduling for context management



© 2021 Arm

Thank You
Danke

Gracias
谢谢

ありがとう
Asante
Merci

감사합니다
धɊवाद

Kiitos
شكرًا

ধনƟবাদ
תודה


