
TrustedFirmware
OpenCI and MISRA
testing using ECLAIR
Roberto Bagnara, BUGSENG srl
Paul Sokolovsky, Linaro Developer Services

MISRA C & BUGSENG Tooling
Overview

Roberto Bagnara
Software Verification Expert and Evangelist at BUGSENG | Professor of Computer Science | Member of the ISO/IEC

JTC1/SC22/WG14 - C Standardization Working Group | Member of the MISRA C Working Group

BUGSENG is a leading provider of solutions and services for software verification

Team is composed of highly skilled researchers and software engineers with extensive
experience in software verification

Strong presence in the software engineering community:
● MISRA C and C++ Working Groups
● MISRA SQM (Software Quality Metrics)
● ISO/IEC JTC1/SC22/WG14 (C Standardization Working Group)

BUGSENG consulting services help industry leaders improving their development
processes and complying with functional-safety standards

BUGSENG is also a renowned resource for advanced professional training

Advantages of the C programming language
There are many strong reasons behind the use of C during the past 50 years:
● C compilers exist for almost any processor
● C compiled code is very efficient and without hidden costs
● C allows writing compact code (many built-in operators, limited verbosity, …)
● C is defined by an ISO standard
● C, possibly with extensions, allows easy access to the hardware
● C has a long history of usage in critical systems
● C is widely supported by all sorts of tools

Disadvantages of C
ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group, has always
been faithful to the original spirit of the language:

a) Trust the programmer
b) Don't prevent the programmer from doing what needs to be done
c) Keep the language small and simple
d) Provide only one way to do an operation
e) Make it fast, even if it is not guaranteed to be portable
f) Make support for safety and security demonstrable

Point (f) was only added for C11

All the other points are bad for safety and security

What is “Behavior”

True in C, but also in C++, Rust, Go, OCaml, . . .

What is “Undefined Behavior”

No requirements means absolutely no requirements: crashing, erratic behavior of any
kind, formatting the hard disk!

Normally it means the compiler assumes undefined behavior does not happen

If it does happen, the programmer has violated the contract: warranty void!

Undefined Behavior: Examples
● The program attempts to modify a string literal (6.4.5)

Undefined Behavior: Examples (cont’d)
● The value of an object with automatic storage duration is used while it is

indeterminate (6.2.4, 6.7.8, 6.8)
● A trap representation is read by an lvalue expression that does not have character

type (6.2.6.1)

What is “Unspecified Behavior”

Unspecified Behavior: Example
● The order in which subexpressions are evaluated and the order in which side

effects take place, except as specified for the function-call (), &&, ||, ?:, and comma
operators (6.5)

What is “Implementation-Defined Behavior”

Implementation-Defined Behavior: Example
● Which of signed char or unsigned char has the same range, representation, and

behavior as “plain” char (6.2.5, 6.3.1.1)

Why?
We described:
● Undefined behavior
● Unspecified behavior
● Implementation-defined behavior
● (and we glossed over locale-specific behavior)

Why is the standardized language not fully defined?
● Because implementing compilers is easier
● Because compilers can generate faster code

UB: Signed Integer Overflow
The behavior is undefined when:

An exceptional condition occurs during the evaluation of an expression (6.5)

Can be compiled as

UB: Modifying String Literals
The behavior is undefined when:

The program attempts to modify a string literal (6.4.5)

Example: in a program there are literals "Tail" and "HeadTail"

The compiled program can store in memory only "HeadTail" and return the pointer to
the fifth character as "Tail"

Changing one string may also change the other, but the compiler can assume this will
never happen

UB: Shifting Too Much
The behavior is undefined when:

An expression is shifted by a negative number or by an amount greater than or
equal to the width of the promoted expression (6.5.7)

Strange: if I push 32 or more zeros from the right the result should
be zero, right?

UB: Shifting Too Much Example
From Intel64 and IA-32 Architectures Manual, page 1706 section
“IA-32 Architecture Compatibility”:

The 8086 does not mask the shift count. However, all other IA-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Basically, this means that in those machines

Strength and Weakness of C
The weakness of the C language comes from its strength:
● Ease of writing efficient compilers for almost any architecture ⟹ non-definite

behavior
● Efficient code with no hidden costs ⟹ no run-time error checking
● Many compilers, defined by an ISO standard (must standardize existing practice,

many vendors, backward compatibility) ⟹ non-definite behavior
● Easy access to the hardware ⟹ easy to shoot your own foot
● Compact code ⟹ the language can be easily misunderstood and misused

Language Subsetting
Several features of C do conflict with both safety and security

For safety-related applications, language subsetting is crucial

Mandated or recommended by all safety- and security-related industrial standards:
● CENELEC EN 50128
● IEC 61508
● ISO 26262
● RTCA DO-178C

The most authoritative language subset for the C programming language is MISRA C

Presentation of the MISRA C Guidelines

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

MISRA C Rule 1.1

MISRA C Rule 1.1 (cont’d)
Compilers cannot be trusted: they may accept constructs not defined by the language

A conforming compiler does not need to generate a diagnostic when a translation
limit is exceeded and an executable may be generated that does not work as
expected

It is possible that some non-conforming compilers fail to diagnose constraint
violations

Language features that are outside the supported versions of C have not been
considered when developing the MISRA guidelines

MISRA C Rule 1.1 (cont’d)

Empty initializers and returning of void expressions are undefined in all versions of the
C standard

GCC accepts them but does not document them as extensions

MISRA C Rule 3.2

MISRA C Rule 3.2 (cont’d)

If a // commented line ends with a back-slash followed by a new-line, then the
following line is part of the comment, and, if this was not intended, an important line of
code may be lost

The following example shows how a path separator at the end of the comment may
accidentally comment out the next line of code:

MISRA C Rule 9.1

MISRA C Rule 9.1 (cont’d)
C99 Undefined 10: the value of an object with automatic storage duration is used while
it is indeterminate (6.2.4, 6.7.8, 6.8)

MISRA C Rule 9.1 (cont’d)
We must ensure that local variables always have a value when
they are read

MISRA C Rule 13.2

MISRA C Rule 13.2 (cont’d)

Between two sequence points the evaluation order is unspecified

In addition, the following situations can lead to undefined behavior:
● modifying an object more than once
● modifying and reading an object, unless reading is necessary to store in the object

The logical AND (&&), logical OR (||), conditional (?:) and comma (,) operators have well
defined operand evaluation orders

MISRA C Rule 13.2 (cont’d)
TCNT1 and TCNT2 are memory mapped hardware registers

Which side effect is triggered first?

MISRA C Rule 13.2 (cont’d)
Now the side effect order is definite

ECLAIR Software Verification Platform
General highlights:
● Very high analysis accuracy
● Very high coverage: 100% of the MISRA C guidelines up to and including

Amendment 3
● No configuration required to adapt the analysis to the compilation toolchain and

the used compilation options: automatically detects all the implementation-
defined behaviors, including predefined macros, taking into account all options
given to the compiler, assembler, linker, librarian, …

● Certified for use in safety-related development according to
○ IEC 61508:2010 for any SIL
○ ISO 26262:2018 for any ASIL
○ EN 50128:2011 + A2:2020 for any SIL
○ IEC 62304:2006 + Amd 1:2015 for any software safety class
○ ISO 25119:2018 + Amd 1:2020] for any SRL

ECLAIR Software Verification Platform (cont’d)
More general highlights:
● Many other features besides MISRA checking: metrics, bug finding, stylistic

guidelines from BARR-C:2018, integrated requirement management tool
● Automatic verification of architectural constraints at the software level,

instrumental in providing evidence of
independence/isolation/segregation/freedom from interference

Highlights from a CI perspective:
● All users have access to fully detailed reports without installing anything
● All users have access to private, sophisticated filters (i.e., locally-stored and

independent from one another)
● With the ECLAIR Client Kit, users can use their favorite IDE (Eclipse,Visual Studio,

Visual Studio Code, NetBeans, CLion, . . .)

Enabling MISRA in OpenCI
Paul Sokolovsky - Linaro Developer Services, TrustedFirmware OpenCI team

Short intro to TrustedFirmware project
https://www.trustedfirmware.org/

TrustedFirmware provides reference implementations of
secure software for modern Arm processors, both “A”
(application processors) and “M” (microcontrollers).

● Initially, and most notably boot and system services,
TrustedFirmware-A and TrustedFirmware-M respectively.

● More projects are added over time, including those of
wider interest beyond just Arm community, e.g. mbedTLS.

An OpenSource project, with community consisting largely of
Arm chip vendors and system integrators building Arm
platforms (e.g. Google).

https://www.trustedfirmware.org/

CI for TrustedFirmware project
Initially, in-house CI at Arm. Was migrated and upgraded to “OpenCI”
hosted by Linaro Service group, to improve community access and extend
CI coverage and functionality. Largely maintained by Arm and Linaro
teams, with growing involvement from wider TrustedFirmware community.

OpenCI consists of:
● Jenkins server to schedule the builds and tests

○ Build agents are Docker and AWS EC2 based
● Linaro LAVA for test execution, both on emulated platforms (FVP,

QEMU) and real hardware

TrustedFirmware projects are effectively highly configurable frameworks
with a lot of knobs to tweaks - a lot to test. OpenCI runs ~3000 builds daily,
and growing. Scalability is one of the biggest tasks.

https://ci.trustedfirmware.org/ | https://tf-ci-users-guide.readthedocs.io/

https://ci.trustedfirmware.org/
https://tf-ci-users-guide.readthedocs.io/

Static and dynamic analyses
Besides pure builds and tests, OpenCI runs a number of static and dynamic analyses:

● Various style checks as examples of simple static analyses
● Code coverage analysis as an example of dynamic analysis
● Various ad-hoc static analyses for code correctness and avoiding common pitfalls

Another long-standing analysis goal: improve MISRA compliance of the TrustedFirmware
projects - the focus of today’s presentation.

“Impedance mismatch”
Typically, a goal of MISRA compliance efforts is MISRA certification. The certification
applies to a specific product, that is:
● Very specific software project (represented by the exact code tree).
● Very specific hardware platform.
● Very specific configuration.
● Very specific compiler and its options.

All this recorded in a MISRA report, together with “deviations” (exceptions) to MISRA rules.

But that’s not what TrustedFirmware projects are! As was mentioned, they are largely
highly configurable (dozens of supported platforms, hundreds of options) frameworks from
which specific products can be built.

The aim of MISRA testing for TrustedFirmware
Given the “impedance mismatch” above, the goal of MISRA testing for TrustedFirmware is
not achieving certification level itself. But rather:

● Establish and maintain a baseline quality level for projects in regard to the MISRA
spec. Roughly speaking, we’d like the codebase to be compliant with all mandatory
rules.

● Whenever possible, improve compliance with other MISRA rules (required and
advisory) - subject to contribution from the community.

● Provide project members with guidelines and best practices towards achieving
MISRA certification, if they choose so.

TrustedFirmware and ECLAIR
ECLAIR is one of the leading MISRA compliance tools on the market. The question is how
well it can adapt to “peculiar” TrustedFirmware requirements in that regard.

Features which support its usage for this role in TrustedFirmware CI:
● Highly configurable, allows to disable any MISRA rules.
● But the best practice of the tool is not to disable them, but to collect as much

information about the codebase as possible. Instead, particular rules can be filtered
out at report generation time.

● There can be multiple reports with different filters, e.g. only mandatory rules selected,
or also required/advisory.

● Excellent support for running in batch mode, as required for CI.
● Able to produce self-contained browser-based reports.

Major challenge: supporting multiple configs 1/3
As was mentioned previously, TrustedFirmware is a framework
with dozens of supported platforms and hundreds of options.
For MISRA testing we’d like to get as wide coverage across
them as possible, but how to achieve that? The baseline
approach is to build each config [among selected for MISRA
testing] one by one, and produce a report for each. That’s how
initial implementation for TF-A was done.

An obvious problem with such an approach is that with already
a dozen of configs, it’s not very sustainable: the reports are
repetitive, with maybe ~90% of content is the same (applying to
common code across the configs), so spotting useful
differences is almost impossible (or takes high effort).

Config 1

Config 2

Config 3

Config 4

Config N

Major challenge: supporting multiple configs 2/3
The problem with multiple TF configs is not new to MISRA, it’s the same problem as we
face with other static/dynamic analyses. In general, there’re 2 ways deal with it:

Perform independent analyses on individual
configs, and then merge/collate results into a
cumulative report.

Build multiple configs one by one in the same
analysis context, so that results from them would
be accumulated “automatically”.

Start

Config 1 Config 2 Config N…

Merge

Cumulative
report

Start

Config 1

Config 2

Config N

…
Cumulative

report

Analysis DB

Example: Code coverage Example: Coverity

Major challenge: supporting multiple configs 3/3
After consulting with BUGSENG, turned out that ECLAIR supports working in 2nd mode, of
accumulating successive analyses in a single project database, so any “collation” happens
automatically. This approach was tested with TF-M analysis implementation, was found to
be successful, and then the plan now is to migrate TF-A analysis to it too.

Single cumulative
report over multiple

configs

Config 1

Config 2

Config 3

Config 4

Config N

Deploying ECLAIR for OpenCI 1/2
ECLAIR is a proprietary software and requires an active connection to a license server to
function. By far, deploying and configuring the license server was the most complex part of
the initial setup. And not that it’s really difficult, more just that there are many different
deployment options, plus the perceived importance of the license server which is a
“gateway” to ECLAIR functionality. That said, after spending on it some time, it works well
“in the background”.

Otherwise, we follow standard build process setup as used in OpenCI: we perform builds in
Docker containers, so prepared a Docker image with ECLAIR, toolchains, and other build
dependencies preinstalled. On startup, the container requests a time-limited key for the
ECLAIR tools, the normal build is performed in the ECLAIR environment, repeated for each
requited TF configuration, then individual analysis information is collected in a project
database. ECLAIR reporting tool is then run on the project database to produce text and
HTML reports, which are then post-processed to make them fully self-contained.

Deploying ECLAIR for OpenCI 2/2

License
Server

Jenkins
Controller

Docker container with
ECLAIR, toolchains,

other build deps

Jenkins worker

Starts a container on worker

Build artifacts
(self-contained
MISRA HTML

reports)

Publishes

Leases a
time-limited

key

Deploying ECLAIR for OpenCI - delta report

Build baseline
codebase revision

without a patch

Build codebase with
patch applied

Tag project
databases for

differences

“Resolved issues”
report

“New issues”
report

Producing delta report for Gerrit patches. All heavy lifting is performed by
ECLAIR reporting tools.

Example of ECLAIR analysis results

Example of ECLAIR analysis results

Example of ECLAIR analysis results

Example of ECLAIR analysis results

Example of ECLAIR analysis results

Example of ECLAIR analysis results

Q & A

Thank you
About TrustedFirmware.org
TrustedFirmware.org is an open source project implementing foundational software components for creating secure
devices. TrustedFirmware provides a reference implementation of secure software for processors implementing both
the A-Profile and M-Profile Arm architecture. It provides SoC developers and OEMs with a reference trusted code
base complying with the relevant Arm specifications. Trusted Firmware code is the preferred implementation of Arm
specifications, allowing quick and easy porting to modern SoCs and platforms. This forms the foundations of a Trusted
Execution Environment (TEE) on application processors, or the Secure Processing Environment (SPE) of
microcontrollers. Visit: https://www.trustedfirmware.org/ for more information.

TrustedFirmware.org is member driven and member funded. To learn more about membership and its benefits, please
see the following page or send a request for more information to enquiries@trustedfirmware.org.

About BUGSENG
BUGSENG is a leading provider of solutions and services for static code analysis. Our verification platform has been
designed to help engineers develop higher-quality software, effectively, by changing the traditional rules of the game.

To learn more about BUGSENG, please visit our website or email us at info@bugseng.com

https://www.trustedfirmware.org/
https://www.trustedfirmware.org/about
https://www.bugseng.com/
mailto:info@bugseng.com

