TrustedFirmware |
OpenCl and MISRA "=
testing using ECLAIR .

Roberto Bagnara, BUGSENG srl
Paul Sokolovsky, Linaro Developer Services

MISRA C & BUGSENG Tooling
Overview

Roberto Bagnara

Software Verification Expert and Evangelist at BUGSENG | Professor of Computer Science | Member of the ISO/IEC
JTC1/SC22/WG14 - C Standardization Working Group | Member of the MISRA C Working Group

hugt-eng

BUGSENG is a leading provider of solutions and services for software verification

Team is composed of highly skilled researchers and software engineers with extensive
experience in software verification

Strong presence in the software engineering community:
e MISRA C and C++ Working Groups
e MISRA SQM (Software Quality Metrics)
e |SO/IEC JTC1/SC22/WG14 (C Standardization Working Group)

BUGSENG consulting services help industry leaders improving their development
processes and complying with functional-safety standards

BUGSENG is also a renowned resource for advanced professional training
Linaro

Advantages of the C programming language

There are many strong reasons behind the use of C during the past 50 years:

C compilers exist for almost any processor

C compiled code is very efficient and without hidden costs

C allows writing compact code (many built-in operators, limited verbosity, ...)
C is defined by an ISO standard

C, possibly with extensions, allows easy access to the hardware

C has a long history of usage in critical systems

C is widely supported by all sorts of tools

Linaro

Disadvantages of C

ISO/IEC JTC1/SC22/WG14, a.k.a. the C Standardization Working Group, has always

been faithful to the original spirit of the language:

a)
b)
c)
d)
e)
f)

Trust the programmer

Don't prevent the programmer from doing what needs to be done
Keep the language small and simple

Provide only one way to do an operation

Make it fast, even if it is not guaranteed to be portable

Make support for safety and security demonstrable

Point (f) was only added for C11

All the other points are bad for safety and security

Linaro

What is “Behavior”

ISO/IEC 9899:1999 TC3 (N1256) 3.4

behavior
external appearance or action

The compiler is allowed to do any transformation that ensures that
the “observable behavior” of the program is the one described by
the standard

True in C, but also in C++, Rust, Go, OCaml|, . ..
Linaro

What is “Undefined Behavior”
ISO/IEC 9899:1999 TC3 (N1256) 343

undefined behavior

behavior, upon use of a non-portable or erroneous program
construct or of erroneous data, for which this International
Standard imposes no requirements

No requirements means absolutely no requirements: crashing, erratic behavior of any
kind, formatting the hard disk!

Normally it means the compiler assumes undefined behavior does not happen

If it does happen, the programmer has violated the contract: warranty void!

Undefined Behavior: Examples

e The program attempts to modify a string literal (6.4.5)

#include <stdio.h>

int main() {
char *str = "Hello!!!";
str[6] = °>\0’; /* Be less emphatic. */
printf (" s\n", sty):

/* How does the program behave? x*/

Undefined Behavior: Examples (cont'd)

e The value of an object with automatic storage duration is used while it is

indeterminate (6.2.4, 6.7.8, 6.8)

e A trap representation is read by an lvalue expression that does not have character

type (6.2.6.1)

int main() {
int a;

if (a > 0) /* Undefined behavior.

return 1;
else
return O;

Bit-trap?

Maybe.

*/

Linaro
W

What is “Unspecified Behavior”

unspecified behavior
use of an unspecified value, or other behavior where this
International Standard provides two or more possibilities and
imposes no further requirements on which is chosen in any instance

Unspecified Behavior: Example

e The order in which subexpressions are evaluated and the order in which side
effects take place, except as specified for the function-call (), &&, ||, ?:, and comma
operators (6.5)

#include <stdio.h>

int hello(void) {
return printf ("Hello ");
&

int world(void) {
return printf("woxld!"):

}

int main() {
return hello () + world();
k
/* Might print: ‘Hello world!’ or
‘world'!'Hello

Linaro
W

What is “Implementation-Defined Behavior”

implementation-defined behavior
unspecified behavior where each implementation documents how
the choice is made

Implementation-Defined Behavior: Example

e Which of signed char or unsigned char has the same range, representation, and

behavior as “plain” char (6.2.5, 6.3.1.1)

#include <limits .h>
#include <stdio.h>

int main() {

if (CHAR_MIN == 0)
fputs ("plain char type is unsigned\n", stdout);
else

fputs ("plain char type is signed\n", stdout);
/* What is the output? x*/

/* Compliant C implementations document this behavior.

}

%/

Why?

We described:

Undefined behavior

Unspecified behavior

Implementation-defined behavior

(and we glossed over locale-specific behavior)

Why is the standardized language not fully defined?

e Because implementing compilers is easier
e Because compilers can generate faster code

Linaro

UB: Signed Integer Overflow

The behavior is undefined when:
An exceptional condition occurs during the evaluation of an expression (6.5)

int is_max(int v) {
return (v + 1 > v) 2 0 : 1;

}

Can be compiled as

int is_max(int v) {
return O;

}

UB: Modifying String Literals

The behavior is undefined when:
The program attempts to modify a string literal (6.4.5)

Example: in a program there are literals "Tail" and "HeadTail"

The compiled program can store in memory only "HeadTail" and return the pointer to
the fifth character as "Tail"

Changing one string may also change the other, but the compiler can assume this will
never happen

Linaro
W

UB: Shifting Too Much

The behavior is undefined when:

An expression is shifted by a negative number or by an amount greater than or
equal to the width of the promoted expression (6.5.7)

uint32_t i = 1;
i = i << 32; /* Undefined behavior . x/

Strange: if | push 32 or more zeros from the right the result should
be zero, right?

Linaro
W

UB: Shifting Too Much Example

From Intel64 and IA-32 Architectures Manual, page 1706 section

“IA-32 Architecture Compatibility™
The 8086 does not mask the shift count. However, all other I1A-32 processors
(starting with the Intel 286 processor) do mask the shift count to 5 bits, resulting in
a maximum count of 31. This masking is done in all operating modes (including the
virtual-8086 mode) to reduce the maximum execution time of the instructions.

Basically, this means that in those machines

= i << 32; /* This is equivalent to... *x/
= i << (32 & O0x1F); sk .. this, 1.6., ... * /
i =1i << 0; /% this, which is a no-op. * /

Linaro
W

Strength and Weakness of C

The weakness of the C language comes from its strength:

Ease of writing efficient compilers for almost any architecture = non-definite
behavior
Efficient code with no hidden costs = no run-time error checking

Many compilers, defined by an ISO standard (must standardize existing practice,

many vendors, backward compatibility) = non-definite behavior
Easy access to the hardware = easy to shoot your own foot
Compact code = the language can be easily misunderstood and misused

Linaro

Language Subsetting

Several features of C do conflict with both safety and security

For safety-related applications, language subsetting is crucial

Mandated or recommended by all safety- and security-related industrial standards:

CENELEC EN 50128
IEC 61508

ISO 26262

RTCA DO-178C

The most authoritative language subset for the C programming language is MISRA C

Linaro
W

Presentation of the MISRA C Guidelines

On the left, a unique identifier for the guideline
composed by a classification as “Rule” or
“Directive” followed by a dot-decimal
sub-identifier; the remaining text is called the
headline of the guideline

Presentation of the MISRA C Guidelines (cont’d)

............... One of “Mandatory”, “Required” or “Advisory”

Category i Required i
SREEIS A pair of the form Decidability, Scope:
AppliEsio the former is one of “Decidable” or

“Undecidable”, the latter is one of
“System” or “Single Translation Unit”

'One or more of “C90” and “C99” separated by comma'

Presentation of the MISRA C Guidelines (cont’d)

A more precise description of the guideline:
. this is normative! |

Amplification T
EA typedef name shall be unique across all name spaces and translation units. Multiple declarations of
the same typedef name are only permitted by this rule if the type definition is made in a header file and
i that header file is included in multiple source files. |

Presentation of the MISRA C Guidelines (cont’d)

. The reason why the guideline exists |

Rationale

i Reusing a typedef name either as another typedef name or as the name of a function, object or |
i enumeration constant, may lead to developer confusion.

Presentation of the MISRA C Guidelines (cont’d)

A description of the situations in which the
. rule does not apply |

Exception

i The typedef name may be the same as the structure, union or enumeration tag name associated with |
 the typedef

Presentation of the MISRA C Guidelines (cont’d)

. Examples showing compliant and non-compliant code |

Example T
ivoid func (void) '
o
ot
i typedef unsigned char u8_t;

}

{

typedef unsigned char u8_t; /* Non-compliant - reuse */
}

i)

itypedef float mass;

Presentation of the MISRA C Guidelines (cont’d)

Presentation of the MISRA C Guidelines (cont’d)

Dir 1.1 Any implementation-defined behaviour on which the output of the
program depends shall be documented and understood

C90 [Annex G.3], C99 [Annex J.3]
Category Required T l _________________

Applesia LO0E0 ' Reference to one or more published '
sources to be consulted for a fuller

understanding of the rationale
Appendix G of this document lists, for both C90 and C99, those implementation-defined behaviours
that:

Amplification

* Are considered to have the potential to cause unexpected program operation, and

e May be presentin a program even if it complies with all the other MISRA C guidelines.

MISRA C Rule 1.1

The program shall contain no violations of the standard C syntax
and constraints, and shall not exceed the implementation’s
translation limits

Category Required
Analysis Decidable, Single Translation Unit
Applies to C90, C99, C11

Linaro

MISRA C Rule 1.1 (cont'd)

Compilers cannot be trusted: they may accept constructs not defined by the language

A conforming compiler does not need to generate a diagnostic when a translation
limit is exceeded and an executable may be generated that does not work as
expected

It is possible that some non-conforming compilers fail to diagnose constraint
violations

Language features that are outside the supported versions of C have not been
considered when developing the MISRA guidelines

Linaro

MISRA C Rule 1.1 (cont’d)

Empty initializers and returning of void expressions are undefined in all versions of the

C standard

GCC accepts them but does not document them as extensions

extern void f(char *p);
void g(void);

void g(void) {
char a[9] = {};
return f(a);

r

MISRA C Rule 3.2

Line-splicing shall not be used in // comments |

Category Required

Analysis Decidable, Single Translation Unit
Applies to C99, C11

Linaro

MISRA C Rule 3.2 (cont'd)

Line-splicing shall not be used in // comments

If a // commented line ends with a back-slash followed by a new-line, then the
following line is part of the comment, and, if this was not intended, an important line of

code may be lost

The following example shows how a path separator at the end of the comment may
accidentally comment out the next line of code:

// see critical.* in c:\project\src\
critical_function(); J

Linaro
W

MISRA C Rule 9.1

The value of an object with automatic storage duration shall not
be read before it has been set

Category Mandatory
Analysis Undecidable, System
Applies to C90, C99, C11

Linaro

MISRA C Rule 9.1 (cont'd)

C99 Undefined 10: the value of an object with automatic storage duration is used while

it is indeterminate (6.2.4, 6.7.8, 6.8)

MC3.R9.1_.n02/ORIG/MC3.R9.1_n02a.c

static int32 .t f(int32. .t a)
Iint32 t x:
if (a > 0) {
X = 2;
}

return Xx;

¥

Linaro

MISRA C Rule 9.1 (cont'd)

We must ensure that local variables always have a value when
they are read

MC3.R9.1_.n02/0K1/MC3.R9.1_n02a.c

static int32 . t f(int32 t a) {
INt32 -t X
1if (a > 0) |
x = 2
}
else {
x = 0;
i
return Xx;
}

Linaro

MISRA C Rule 13.2

The value of an expression and its persistent side effects shall be
the same under all permitted evaluation orders

Category Required
Analysis Undecidable, System
Applies to C90, C99, C11

Linaro

MISRA C Rule 13.2 (cont'd)

The value of an expression and its persistent side effects shall be
the same under all permitted evaluation orders

Between two sequence points the evaluation order is unspecified

In addition, the following situations can lead to undefined behavior:

e modifying an object more than once
e modifying and reading an object, unless reading is necessary to store in the object

The logical AND (&&), logical OR (]|), conditional (?:) and comma (,) operators have well
defined operand evaluation orders '.I'lLinam

MISRA C Rule 13.2 (cont'd)

TCNT1 and TCNT2 are memory mapped hardware registers

Which side effect is triggered first?

MC3.R13.2_.n03/ORIG/MC3.R13.2_n03a.c

static volatile uintl16_t TCNT1;
static volatile uintl16_t TCNT2;

statiec int32_ t f(uintl6 t tecl, ninti6 t te2):

int main(void) {
return f (EENTIESEEENTS)

}

Linaro

MISRA C Rule 13.2 (cont'd)

Now the side effect order is definite

MC3.R13.2.n03/0K1/MC3.R13.2_n03a.c

static volatile uinti16_t TCNT1:
static volatile uintl6_t TCNT2;

statiec int32_ t f(uintl6 t tecl, uinti6 t tec2):

int main(void) {
nintle_t €tecl = TCNTHL ;
uintl6_t tc2 = TCNT2;
return f (Ecllrec?) :

i

Linaro

ECLAIR Software Verification Platform

General highlights:

e \Very high analysis accuracy

e Very high coverage: 100% of the MISRA C guidelines up to and including
Amendment 3

e No configuration required to adapt the analysis to the compilation toolchain and
the used compilation options: automatically detects all the implementation-
defined behaviors, including predefined macros, taking into account all options
given to the compiler, assembler, linker, librarian, ...

e Certified for use in safety-related development according to

O

(@)
@)
@)
@)

IEC 61508:2010 for any SIL

ISO 26262:2018 for any ASIL

EN 50128:2011 + A2:2020 for any SIL

IEC 62304:2006 + Amd 1:2015 for any software safety class
ISO 25119:2018 + Amd 1:2020] for any SRL

Functional @y
Safety ©

Linaro
W

ECLAIR Software Verification Platform (cont’d)

More general highlights:

e Many other features besides MISRA checking: metrics, bug finding, stylistic
guidelines from BARR-C:2018, integrated requirement management tool

e Automatic verification of architectural constraints at the software level,
instrumental in providing evidence of
independence/isolation/segregation/freedom from interference

Highlights from a Cl perspective:
e All users have access to fully detailed reports without installing anything
e All users have access to private, sophisticated filters (i.e., locally-stored and

independent from one another)
e With the ECLAIR Client Kit, users can use their favorite IDE (Eclipse,Visual Studio,

Visual Studio Code, NetBeans, CLion, . ..)
Celair

Linaro
W

Enabling MISRA in OpenCl

Paul Sokolovsky - Linaro Developer Services, TrustedFirmware OpenCl team

Linaro

Short intro to TrustedFirmware project

https://www.trustedfirmware.org/

TrustedFirmware provides reference implementations of
secure software for modern Arm processors, both “A”
(application processors) and “M” (microcontrollers).

e Initially, and most notably boot and system services, T T 1
TrustedFirmware-A and TrustedFirmware-M respectively.

e More projects are added over time, including those of
wider interest beyond just Arm community, e.g. mbedTLS.

An OpenSource project, with community consisting largely of
Arm chip vendors and system integrators building Arm

platforms (e.g. Google). Linaro
%

https://www.trustedfirmware.org/

Cl for TrustedFirmware project

Initially, in-house CI at Arm. Was migrated and upgraded to “OpenCI”
hosted by Linaro Service group, to improve community access and extend
Cl coverage and functionality. Largely maintained by Arm and Linaro
teams, with growing involvement from wider TrustedFirmware community.

OpenCl consists of:

e Jenkins server to schedule the builds and tests Jenkins
o Build agents are Docker and AWS EC2 based
e Linaro LAVA for test execution, both on emulated platforms (FVP,
QEMU) and real hardware)
~

TrustedFirmware projects are effectively highly configurable frameworks
with a lot of knobs to tweaks - a lot to test. OpenClI runs ~3000 builds daily,
and growing. Scalability is one of the biggest tasks.

hitps://ci.trustedfirmware.org/ | https://tf-ci-users-quide.readthedocs.io/

Linaro

https://ci.trustedfirmware.org/
https://tf-ci-users-guide.readthedocs.io/

Static and dynamic analyses

Besides pure builds and tests, OpenCI runs a number of static and dynamic analyses:

e Various style checks as examples of simple static analyses
e Code coverage analysis as an example of dynamic analysis
e Various ad-hoc static analyses for code correctness and avoiding common pitfalls

Another long-standing analysis goal: improve MISRA compliance of the TrustedFirmware
projects - the focus of today’s presentation.

Linaro

“Impedance mismatch”

Typically, a goal of MISRA compliance efforts is MISRA certification. The certification
applies to a specific product, that is:

e \Very specific software project (represented by the exact code tree).
e \ery specific hardware platform.

e \Very specific configuration.

e \Very specific compiler and its options.

All this recorded in a MISRA report, together with “deviations” (exceptions) to MISRA rules.

But that’s not what TrustedFirmware projects are! As was mentioned, they are largely
highly configurable (dozens of supported platforms, hundreds of options) frameworks from
which specific products can be built.

Linaro

The aim of MISRA testing for TrustedFirmware

Given the “impedance mismatch” above, the goal of MISRA testing for TrustedFirmware is
not achieving certification level itself. But rather:

e Establish and maintain a baseline quality level for projects in regard to the MISRA
spec. Roughly speaking, we'd like the codebase to be compliant with all mandatory
rules.

e \Whenever possible, improve compliance with other MISRA rules (required and
advisory) - subject to contribution from the community.

e Provide project members with guidelines and best practices towards achieving
MISRA certification, if they choose so.

Linaro

TrustedFirmware and ECLAIR Celair

ECLAIR is one of the leading MISRA compliance tools on the market. The question is how
well it can adapt to “peculiar” TrustedFirmware requirements in that regard.

Features which support its usage for this role in TrustedFirmware CI:

Highly configurable, allows to disable any MISRA rules.

But the best practice of the tool is not to disable them, but to collect as much
information about the codebase as possible. Instead, particular rules can be filtered
out at report generation time.

There can be multiple reports with different filters, e.g. only mandatory rules selected,
or also required/advisory.

Excellent support for running in batch mode, as required for CI.

Able to produce self-contained browser-based reports.

Linaro

Major challenge: supporting multiple configs 1/3

As was mentioned previously, TrustedFirmware is a framework
with dozens of supported platforms and hundreds of options.
For MISRA testing we’d like to get as wide coverage across
them as possible, but how to achieve that? The baseline
approach is to build each config [among selected for MISRA
testing] one by one, and produce a report for each. That’'s how

TR . Config 1
initial implementation for TF-A was done.

Config N

. . . . Config 2
An obvious problem with such an approach is that with already
a dozen of configs, it's not very sustainable: the reports are
repetitive, with maybe ~90% of content is the same (applying to Config 3
common code across the configs), so spotting useful _
differences is almost impossible (or takes high effort). Config 4

Linaro

Major challenge: supporting multiple configs 2/3

The problem with multiple TF configs is not new to MISRA, it's the same problem as we
face with other static/dynamic analyses. In general, there’re 2 ways deal with it:

Perform independent analyses on individual Build multiple configs one by one in the same
configs, and then merge/collate results into a analysis context, so that results from them would
cumulative report. be accumulated “automatically”.
Start Start
. /]
Config 1 Config 2 Config N Config 1
\J/ ! Analysis DB
Merge Config 2
Cumulative : Cumulative
report g Y report
Example: Code coverage Example: Coverity _hLinaro

Major challenge: supporting multiple configs 3/3

After consulting with BUGSENG, turned out that ECLAIR supports working in 2nd mode, of
accumulating successive analyses in a single project database, so any “collation” happens
automatically. This approach was tested with TF-M analysis implementation, was found to
be successful, and then the plan now is to migrate TF-A analysis to it too.

Config 1
Config N
Config 2
Single cumulative
report over multiple
configs
Config 3
Config 4

Linaro
W

Deploying ECLAIR for OpenCl 1/2

ECLAIR is a proprietary software and requires an active connection to a license server to
function. By far, deploying and configuring the license server was the most complex part of
the initial setup. And not that it’s really difficult, more just that there are many different
deployment options, plus the perceived importance of the license server which is a
“gateway” to ECLAIR functionality. That said, after spending on it some time, it works well
“in the background”.

Otherwise, we follow standard build process setup as used in OpenCl: we perform builds in
Docker containers, so prepared a Docker image with ECLAIR, toolchains, and other build
dependencies preinstalled. On startup, the container requests a time-limited key for the
ECLAIR tools, the normal build is performed in the ECLAIR environment, repeated for each
requited TF configuration, then individual analysis information is collected in a project
database. ECLAIR reporting tool is then run on the project database to produce text and

HTML reports, which are then post-processed to make them fully self-contained. i
inaro
%

Deploying ECLAIR for OpenCl 2/2

License
Server

Leases a
time-limited
key

Jenkins
Controller

Starts a container on worker

4

Jenkins worker

Docker container with
ECLAIR, toolchains,
other build deps

Publishes

4

Build artifacts

(self-contained

MISRA HTML
reports)

Linaro
W

Deploying ECLAIR for OpenCl - delta report

Producing delta report for Gerrit patches. All heavy lifting is performed by

ECLAIR reporting tools.

Build baseline
codebase revision
without a patch

Build codebase with
patch applied

—

Tag project
databases for
differences

/\

“Resolved issues”
report

“New issues”
report

Linaro

Example of ECLAIR analysis results

f Jenkins

Dashboard TF-A tf-a-eclair-daily

LN

)
-

<«

Status

Changes

Console Output

View as plain text

Edit Build Information

Delete build ‘#298'

Parameters

Timings

Open Blue Ocean

Previous Build

Q Search (CTRL+K) @ 0B U@ @ Paulsokolovsk

fvp-default,docker-tf-a-eclair #298

(“) Build #298 (Jul 13, 2023, 2:18:00 AM)

/ Add description

D

Build Artifacts

<>

O
®

No changes.

Started by upstream project tf-a-eclair-daily build number 298
originally caused by:

e Started by timer

This run spent:

* 23 min waiting;
e 29 min build duration;
« 53 min total from scheduled to completion.

Keep this build forever

Started 17 hr ago
Took 29 min on x86_64-TF-(

Linaro

Example of ECLAIR analysis results

Q Search (CTRL+K) @ 0B U2 @ra

Dashboard TF-A tf-a-eclair-daily fvp-default,docker-tf-a-eclair #298 Workspace

B status Artifacts of fFvp-default,docker-tf-a-eclair #298
</> Changes

/ >
Console Output FSECLAIR

@ index.html Jpl13,2023,3:11:15AM 2.32KB R ©

[% View as plain text

. & (all Files in zip)
(4 Edit Build Information

Delete build ‘#298’
== Parameters
® Timings
f;> Open Blue Ocean

& Previous Build
Linaro
™

Example of ECLAIR analysis results
MISRA reports

TF-A Config: fvp-default
CI Build: http://ci.trustedfirmware.org/job/tf-a-eclair-daily/TF CONFIG=fvp-default,]Jabel=docker-tf-a-eclair/298/

Reports:

e Mandatory rules - violations
o Mandatory rules - violations & cautions

e Report by issue strictness (Mandatory/Required/Advisory)_(all),

e Default ECLAIR report
e Default ECLAIR report (plain text)

ECLAIR terminology cheatsheet:

« "violation" is formally proven issue
« "caution" is not formally proven issue, may be a false positive
« "information" is not an issue (from MISRA rules PoV), just FYI aka "know your codebase better"

Example of ECLAIR analysis results

Views: Rows: Columns: < G >

Select... strictness X service X first_file X strictness X

Report counts by strictness/servicelfirst file and strictness

required ~ MC3R1.R12.2 .
lib/xlat_tables_v2/xlat_tables_core.c

first_file lib/xlat_tables_v2/xlat_tables_core.c
42 reports: 0.32% (7.76%)

"Uirey

il
McarL R ’\
| ret\““ed
strictness
sefri\rllsc;eme hidden advisory required
TOTAL 639 1345 11821
advisory 1 1345
MC3R1.D4.2 7

incluide/archlaarchAAlarch helnere h

B

Example of ECLAIR analysis results

Views: Columns: a< >
Select... service X first_file X kind X
a7 N A
-7 g g 8 /1
e = / = Aol o Y SR |
Report counts by servicelfirst file and kind, M sl faniction:
o / / ! o ' |If you don't see diagram at all, ality is defining custom
£ : | |it means that there're no issues| filters
/ ' passing the current filters

' Ctrl + mouse wheel to resize
! diagram

! Hover over a sector to get
additional information in a
' tooltip

Click on a sector to open list
! of issues related to it,

Shift + click to open in a new
¢ window

Ctrl + click a sector to "drill
down" into it

If you drilled down into diagram
sector, Ctrl + click center to
go level up

Click column header to sort rows Brag shissepertor

ascending/descending

\ 7 / ~
service, 57 L .
first_file. 4T information
MC3R1.D4.10 -7 =

incIudeIIibIeI3_runtimeﬁ)ubsub_events.h

MC3R1.D4.13 [il :
[Linaro

common/backtrace/backtrace.c

Example of ECLAIR analysis results

Reports for strictness required

strictness required (0 of 597 cautions, 8 of 11821 violations)

untagged
lib/xlat_tables_v2/aarch64/xlat_tables_arch.c:271.16-271.55: , first operand has essential type 64-bit unsigned integer
<preprocessed lib/xlat_tablj_v2/aarch64/xlat_tables_arch.c>:1603.35-1603.59:) preprocessed tokens
include/lib/libc/assert.h:20. 27 ,k expanded from macro “assert'
myggamuggm& - expanded from macro 'IS_POWER_OF_TWO'
include/lib/utils_def.h:18.20: ,° expanded from macro "IS_POWER_OF_TWO'

lib/xlat_tables_v2/aarch64/xlat_tables_arch.c:271.16-271.55: ,° second operand has essential type 8-bit signed integer
<preprocessed lib/xlat_tables_v2/aarch64/xlat_tables_arch.c>:1603.63: /- preprocessed tokens

include/lib/libc/assert.h:20.27: ;- expanded from macro “assert'
include/lib/utils_def.h:18.24: ;- expanded from macro "IS_POWER_OF_TWO'
lib/xlat_tables_v2/aarch64/xlat_tables_arch.c:271.16-271.55: ,° *-' subtraction operator
<preprocessed lib/xlat_tables_v2/aarch64/xlat_tables_arch.c>:1603.61: /-~ preprocessed tokens
include/lib/libc/assert.h:20.27: > expanded from macro “assert'
include/lib/utils_def.h:18.22: ,° expanded from macro "IS_POWER_OF_TWO'
untagged
lib/xlat_tables_v2/aarch64/xlat_tables_arch.c:271.16-271.55: ,- first operand has essential type 64-bit unsigned integer
<preprocessed lib/xlat_tables_v2/aarch64/xlat_tables_arch.c>:1603.5-1603.65: . preprocessed tokens
include/lib/libc/assert.h:20.27: ;- expanded from macro “assert'

o< CGED >

252 * using TTBRO® -
b o RS LSRN [ih/xat_tables v2/aarch64/xlat_tables arch.c

264 assert(max_va < ((uint64_t)UINTPTR_MAX));

265

266 virtual_addr_space size = (uintptr_t)max va + 1U;

267

268 assert(virtual_addr_space _size >=

269 xlat_get min_virt_addr_space size());

270 assert(virtual addr space size <= MAX VIRT ADDR SPACE_SIZE);

271 assert (IS_POWER OF TWO(virtual addr_space size));

first operand has essential type 64-bit unsigned integer

272

273 /¥

274 * __builtin_ctz11(0) is undefined but here we are guaranteed that e

275 * virtual _addr_space size is in the range [1,UINTPTR _MAX].

276 */ i

277 int t@sz = 64 - _ builtin_ctzll(virtual_addr_space_size); &Ialr
e e o e) U e e (= T (3 T

Thank you

About TrustedFirmware. org ~» _ ‘ : - '.J;,”

devices. TrustedFlrmware provides a reference implementation of secure software for processoré e ::.3 b tl‘g :’, /
the A-Profile and M-Profile Arm architecture. It provides SoC developers and OEMs with a reference tru”‘s'tedﬁ}&.. o ;
base complying with the relevant Arm specifications. Trusted. Firmware code is the preferred implementation.of Arm * .. 0

specifications, allowing quick and easy porting to modern SoCs and platforms. This forms the foundations ofia Trusted" ‘;‘-
Execution Environment (TEE) on application processors, or the Secure Processing Environment (SPE) of
microcontrollers. Visit: for more information.

TrustedFirmware.org is member driven and member funded. To learn more about membership and its benefits, please

see the or send a request for more information to
About BUGSENG Aoy,
-
BUGSENG is a leading provider of solutions and services for static code analysis. Our verification platfo s been

designed to help engineers develop higher-quality software, effectively, by changing the traditional rules of the "mq*

To learn more about BUGSENG, please visit our or email us at -~ e

https://www.trustedfirmware.org/
https://www.trustedfirmware.org/about
https://www.bugseng.com/
mailto:info@bugseng.com

