PSA Firmware Framework - M

Secure Functions

o ‘ - .\ i , . "‘
It & 4 e
' i
/ 2 i ; e——re >
A ZX 4&@"‘ » AlG
- ~“ 5 ..’l . . N .
‘\.‘o: b o A | <

> ,nj- 3 : § o 5 . ‘ r \ ' |

| e : g ' 4 B n\

i ! /

+) © 26Wimiteh (or its affiliates)
- "';:j " : \ /

Secure Functions

Step 2 of the roadmap to PSA Firmware Framework - M v1.1

2

Context

Analysis

Proposal

Appendix —the roadmap

© 2020 Arm Limited (or its affiliates)

arm

Context

Today we have two programming models for developing and running security services

IPC model (PSA FF-M v1.0 and TF-M)

Services are deployed in Secure Partitions (SP)

Each SP is programmed like a single-threaded C
program with a non-returning entry-point

The SP thread polls for service messages and
other events, and responds to them

The SP has its own execution context and stack
The SP determines which signal to process next

Library model (TF-M)

e Services are functions

* The functions are invoked by the framework
within the secure processing environment

* Each service function handles requests from a
corresponding client-side function

e The framework is in control of the execution
context and sequence in which the service
handlers run

The programming model applies to the whole system. TF-M is built to either run all the services in the
Library model, or all services in the IPC model.

In PSA FF-M v1.1, we want to enable simple frameworks, similar to the Library model for small systems.

3

© 2020 Arm Limited (or its affiliates)

arm

Analysis

The IPC model design provides flexibility for the RoT Service developer

However, this design places constraints on the framework implementation:
- The framework must allocate and manage a thread stack and execution context for each SP
- The SP may have to run in a different processor state, resulting in more context switches
- The SP entry point and main processing loop are ‘boilerplate’ code for simple SPs

For many RoT Services, the flexibility is not used and the necessary costs to the
developer and implementation provide no benefits

However, using the simpler Library model is often too simple to use as an alternative:
- The choice of model affects the entire system, not just a single SP
- It does not have built-in support for connection/session-based APIs
- Library model does not allow a service to identify different clients
- Library model doesn't scale easily to concurrent or isolated services
- Library model doesn’t provide some valuable mitigations against errors in client parameter processing

Library model uses a completely different APl in the client and service to the IPC model

© 2020 Arm Limited (o its affiliates) a r m

Proposal — Secure Function model

Note: this is an initial proposal, and open for review, feedback and update

* The Secure Function model (SFN model) is an alternative SP programming model
 The SFN model looks like a hybrid between the IPC model and the Library model

- Secure services are implemented as Secure Functions (SFN) that are called by the framework
- SFNs are invoked by a client call to psa_connect(), psa_call() and psa_close()

- SFNs are provided with a client identity

- SFNs access client parameters indirectly using APIs

* The framework invokes the SFNs directly to process a request
- The framework provides the execution context for the SFN
- There is no SP entry-point and signal handling loop

* Execution within and between SPs is the same as the IPC model:
« An SP using the SFN model is single-threaded, so SFNs within a single SP are run sequentially
- The framework is permitted to run SFNs from different SPs concurrently

* The SFN model APl is compatible with the IPC model API, not the Library model API
5 © 2020 Arm Limited (or its affiliates) a rm

Proposal — SP definition details

Note: this is an initial proposal, and open for review, feedback and update

 The SP manifest file must define a new attribute model, to be either IPC or SFN
- If it is SFN, then SP is using the SFN model and the following changes apply to the SP:

* The entry point attribute is replaced with an optional entry_init attribute
- If present, this identifies a function that is used to initialise the SP

* The stack size and heap size attributes become hints to the framework
* There are no service signals, and the service signal names are not defined
* Each RoT service defined in the manifest has a Secure Function with the prototype:

psa_status_t sfn_name(const psa msg t* msg);

« where name is the lowercase version of the service’s name attribute

* |RQs and the doorbell still use SP signals
- An SFN can use psa_wait() to check or block for a specific interrupt or doorbell signal

6 © 2020 Arm Limited (or its affiliates) a r m

Proposal — writing SFNs

Note: this is an initial proposal, and open for review, feedback and update

* SFNs will still receive connect, disconnect and request messages, in the same way that
these were delivered to an SP using the IPC model?

* ASFN processes the delivered message using the psa_read(), psa_write(), psa_skip(),
and psa_set _rhandle() functions

* The return value from the SFN is used as the reply status for the message

* A SFN cannot use the psa_get() or psa_reply() functions, as this functionality is
performed by the framework

* ASFN can use psa_wait() to wait for IRQ signals that are defined in the manifest, or the
Secure Partition doorbell signal

* The remaining PSA-FF-M APIs work in the same way as in the IPC model

1 Step 6 in the roadmap will provide stateless services, without connection and disconnection messages

7 © 2020 Arm Limited (or its affiliates) a r m

Implementation — Framework impact

* Conceptually, for a single service named SERVICE in an SP, the framework behaves as if
it was the following IPC model entry point:

void sp main(void)

{
psa_msg t msg;
for (53)
{
psa_wait(SERVICE_SIGNAL, PSA BLOCK);
if (psa_get(SERVICE_SIGNAL, &msg) == PSA_SUCCESS)
psa_reply(msg.handle, sfn_service(&msg));
}
}

* (Note that in the SFN model, SERVICE_SIGNAL would not be defined)

* In practice, the framework can choose to implement this very differently. For example,
by running sfn_service() on the SPM execution stack

8 © 2020 Arm Limited (or its affiliates) a r m

Next steps

* Continue with the detailed development of the steps in the roadmap
- Finalising the proposal for step 3. Memory mapped client parameters
- Draft proposal for step 4+5. Interrupt handling
- Draft proposal for step 6. Stateless services

* Compile all of the proposals into a PSA FF-M v1.1-alpha update specification

* Please provide feedback on this proposal, or the roadmap in the TF-M mailing list, or to
arm.psa-feedback@arm.com

9 © 2020 Arm Limited (or its affiliates) a r m

a rm " " " "~ Thank You
$ L “ _L ; “ $ J_ “ $ L __ Danke
| | | | | | | | ~ Merci

)

HYDES

Gracias

Kiitos

YA

f_érqdi_d
I8
NTIN

© 2020 Arm Limited (or its affiliates)

Appendix

- PSA‘FF-M v1.1 Roadmap

PSA FF-M v1.1 Roadmap

* Thisis a roadmap proposal
- We haven’t worked out the details of all of the steps
- Or even if we need them all, or if we need some others

1. Default handles (proposed)
- Special build-time handle values that allow clients to request one-shot services without making an
explicit connection. Services still receive a connection message for this implicit connection.

2. Secure Functions (proposed)
- Thisintroduces the SFN model as a per-SP option. Services are functions called by the framework,
and use the IPC model APIs to read and write request parameters

3. Directelientmemeoryaccess Memory mapped client parameters (draft)

- This optional APl introduces the ability for a service to directly read and write the client parameter
memory. This will not work on all implementations, but is necessary for efficiency in simple systems.

12 © 2020 Arm Limited (or its affiliates) a r m

Roadmap — continued

4. First Level Interrupt Handling

- This adds a deprivileged, low-latency, interrupt handling capability to SPs that are using the IPC
model. FLIH functions cannot use normal SP APIs, but can signal the SP for later in-thread processing.

5. Second Level Interrupt Handling

- This adds a non-concurrent interrupt handling capability to SPs that are using the SFN model. An SLIH
functions can run if no Secure Function is running in the SP.

6. Stateless services
- This attribute indicates that a service does not maintain any per-connection state. The framework
will not deliver connection or disconnection messages, and connections are automatically accepted.

7. Miscellaneous
« Ensure alignment of functionality between SFN model and IPC model.

13 © 2020 Arm Limited (or its affiliates) a r m

