
PSCI OS-initiated mode in TF-A
Maulik Shah (Qualcomm), Ulf Hansson (Linaro), Wing Li (Google)

23 Feb 2023

Agenda

● Intro to power state coordination
● Why OS-initiated mode?
● Current vendor implementations and workarounds
● Overview of proposed changes
● Testing on vendor platforms
● Requirements and implementation details

Intro to power state coordination

● Power domain topology
○ Logical hierarchy of power domains in a system
○ Arises from the dependencies between power domains

● Local power states and composite power states
○ Local power states describe power states for an individual node
○ Composite power states describe the combined power states for an individual node and its

parent node(s)
● Power state coordination

○ Entry into low-power states for a node above the core level requires coordinating its children
nodes

● Platform-coordinated mode
○ Default mode of coordination
○ The platform keeps track of the composite power states requested for each core and their

parents, and chooses the deepest composite state that is allowed by the requests from the
cores

● OS-initiated mode
○ Optional mode of coordination
○ The OS may request for a composite power state when the last core running in a power

domain goes idle

Intro to power state coordination

● Scalability
○ In platform-coordinated mode, each core independently selects their own idle states

■ Doesn't account for cluster idle states shared between cores
○ In OS-initiated mode, the OS has knowledge of next wakeup for each core and can decide

when cluster idle state is appropriate
■ Especially important for multi-cluster SMP systems and heterogeneous systems like

big.LITTLE

Why OS-initiated mode?

● Simplicity
○ In platform-coordinated mode, the OS doesn't have visibility in the last core of a power domain

going idle
■ Requires communication with an extra API side channel to maintain system and

peripheral states
■ Design smell when a platform is using platform-coordinated but actually wants to use

OS-initiated
○ In OS-initiated mode, the OS can perform last man activity (e.g. power off shared rail) when

the last core goes idle
■ Eliminates the extra API side channel
■ Uses the well documented API between OS and platform

Why OS-initiated mode?

Current vendor implementations and workarounds

● STMicroelectronics
○ For ARM32 platforms, currently using OP-TEE to implement OS-initiated mode
○ For future ARM64 platforms, would use TF-A for OS-initiated mode

● Qualcomm
○ For mobile platforms, currently using custom secure monitor to implement OS-initiated mode
○ For Chrome OS platforms, currently using platform-coordinated mode in TF-A with custom

driver logic for last man activity
■ Would switch to OS-initiated mode to simplify custom driver logic

● Google
○ Currently using platform-coordinated mode in TF-A with custom driver logic for last man

activity
■ Would switch to OS-initiated mode to simplify custom driver logic

Overview of proposed changes

● https://review.trustedfirmware.org/q/topic:psci-osi

https://review.trustedfirmware.org/q/topic:psci-osi

Testing on FVP and Google platforms

● https://review.trustedfirmware.org/c/TF-A/tf-a-tests/+/17684
● Added a new PSCI CPU Suspend in OSI mode test suite to

TF-A Tests
● Tested on FVP_Base_RevC-2xAEMvA and Google platforms
● Excluded from all other platforms using the build option

PLAT_TESTS_SKIP_LIST

https://review.trustedfirmware.org/c/TF-A/tf-a-tests/+/17684

● Tested by Gabriel Fernandez
(gabriel.fernandez@st.com)

● 1 cluster, 2 cores

Testing on
STM32MP15

mailto:gabriel.fernandez@st.com

Testing on Qcom SC7280

● Platform: Qualcomm SC7280 – Available in upstream kernel and TF-A
○ Currently SC7280 uses PSCI platform-coordinated

● Tested by Maulik Shah (quic_mkshah@quicinc.com)
● Patches to use OS-Initiated on SC7280

○ Linux: https://patchwork.kernel.org/project/linux-arm-msm/list/?series=722018
○ Trusted Firmware: https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19487

mailto:quic_mkshah@quicinc.com
https://patchwork.kernel.org/project/linux-arm-msm/list/?series=722018
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/19487

SC7280 - CPUIdle states

● 8 CPUs, 1 L3 cache
● CPU Idle States – Platform-coordinated

○ State0 – WFI
○ State1 – Core Collapse
○ State2 – Rail Collapse
○ State3 – L3 off + System resources voted off

● CPU Idle States – OS-Initiated
○ State0 – WFI
○ State1 – Core Collapse
○ State2 – Rail Collapse

● Cluster domain idle state
○ State3 - L3 off + System resources voted off

PSCI: Flattened v/s Hierarchical view of idle states

PSCI - OS-Initiated vs Platform-coordinated comparison

● Use case: display on, wifi, modem off – 10 seconds

● Numbers
○ Residency: Time in seconds cpu / cluster stays in power collapse
○ Count: No. of times cpu / cluster entered in power collapse
○ Average of 3 iterations for actual count and residency
○ Numbers captured with fixed CPU frequencies

● Results for
○ Only single cpu online
○ Multiple cpus (8) online

Stats Comparison – Single CPU

Stats Comparison – Multiple CPUs

Requirements

● PSCI_FEATURES
○ Function to detect whether a PSCI function is implemented and its properties

● PSCI_SET_SUSPEND_MODE
○ Function to switch between the two different modes of power state coordination

■ The default mode of coordination is platform-coordinated mode
● CPU_SUSPEND

○ Function to move a topology node into a low-power state
○ In platform-coordinated mode, the PSCI implementation coordinates requests from all cores to

determine the deepest state to enter
○ In OS-initiated mode, the PSCI implementation must comply with the request

■ If a request is inconsistent with the implementation's view of the system's state, the
request must be rejected

● Race conditions in OS-initiated mode
○ The OS might request an idle state for a node from one core, while at the same time, the PSCI

implementation observes that another core in the node is powering up
○ If the PSCI implementation doesn't process requests in the order the OS intended, then the

implementation can end up in an incorrect state

Requirements

● Addressing race conditions
○ The OS must specify the deepest power level for which it sees the calling core as the last

running core (last man)
■ Even if the OS doesn't want a node at a certain power level to go idle, it must still

indicate if the core is the last core to go idle at that power level
○ The PSCI implementation must check whether the calling core is the last core to go idle in the

requested power level, or otherwise reject the request

Requirements

Current implementation of platform-coordinated mode

● The functions of interest in the CPU_SUSPEND call stack
○ psci_validate_power_state

■ Calls a platform specific validate_power_state handler, which updates the
state_info object with the requested states for each power level

○ psci_find_target_suspend_lvl
■ Returns the deepest power level that was requested to enter a low-power state

○ psci_do_state_coordination
■ Takes the target power level and the state_info object, and updates the

state_info object with the coordinated target power state for each level
○ pwr_domain_suspend

■ This platform specific function performs the necessary actions to suspend the calling
core and its parents based on the state_info object

Proposed implementation of OS-initiated mode

● Add a boolean build option PSCI_OS_INIT_MODE for a platform to enable
optional support for PSCI OS-initiated mode

○ Defaults to 0
● If PSCI_OS_INIT_MODE=0, the changes on the following slides will not be

compiled into the build

Proposed implementation of OS-initiated mode

● PSCI_FEATURES
○ Update psci_features to return 1 in bit[0] to indicate support for OS-initiated mode for

CPU_SUSPEND
● PSCI_SET_SUSPEND_MODE

○ Define a suspend_mode enum: PLAT_COORD and OS_INIT
○ Define a psci_suspend_mode global variable with a default value of PLAT_COORD
○ Implement a new function handler psci_set_suspend_mode

Proposed implementation of OS-initiated mode

● CPU_SUSPEND
○ Update the platform specific validate_power_state handler to populate the state_info

object based on the state ID from the power state parameter
○ psci_find_target_suspend_lvl remains unchanged
○ Implement a new function psci_validate_state_coordination that ensures the

request satisfies the following conditions
■ The requested power states for each power level are consistent with the system's state
■ The calling core is the last core running at the requested power level

○ Note: this differs from psci_do_state_coordination in that
■ The psci_req_local_pwr_states map must not be modified if the request were

rejected
■ The state_info argument must not be modified since it contains the requested power

states from the OS

● CPU_SUSPEND
○ Update psci_cpu_suspend_start to do the following

■ If PSCI_SUSPEND_MODE is PLAT_COORD , call psci_do_state_coordination
■ If PSCI_SUSPEND_MODE is OS_INIT, call psci_validate_state_coordination

● If validation fails, propagate the error up the call stack
○ Update the return type of the platform specific pwr_domain_suspend handler from void to

int
■ Allows the platform to perform validations based on HW states

Proposed implementation of OS-initiated mode

Questions?

