
© 2022 Arm

Javier Almansa Sobrino

23 Jun 2022

RMM-EL3 Interface



2 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



3 © 2022 Arm

Requirements
• RMM needs to be as platform independent as possible

• Support for PIE
• Needs to be able to receive configuration parameters at boot time.

• RMM has minimal platform specific differentiation at build time

• RMM does not depend on stages prior to BL31 and its configuration is dependent of the configuration 
mechanism used for the EL3 firmware
• This would allow partners to use their own BL2/BL1 image and any configuration mechanism (DT, FCONF, 

hardcoded parameters). BL31 would parse and extract the relevant info for RMM.

• RMM should be EL3 firmware agnostic
• When possible, we should make no assumption about the underlying EL3 software.
• A contract between EL3 and RMM is needed to allow the former to pass platform information to the latter, 

such as
o Number of CPUs
o Address range for peripherals (e.g UART)
o Shared memory buffer (more on this later)



4 © 2022 Arm

Requirements

• The information will be passed from EL3 to RMM via a register contract between both 
parties or via a Boot Manifest (or both).

• RMM may require services from EL3 FW (e.g, to get attestation keys or to delegate or 
undelegate memory granules)
• A formal spec of the services is required.

• The spec defines the switch register convention between RMM and EL3, part of the 
SMCCC contract, when NS world is the client.

• Manage compatibility and migration between EL3 and RMM as the interface evolves to 
cater for future requirements.



5 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



6 © 2022 Arm

Boot process

The boot process is initiated by the Root world (EL3 Firmware)



7 © 2022 Arm

Boot process

RMM accepts up to four arguments, stored in registers x0 to x3. A proposal for the v0.1 
Boot Interface (argument usage) is:

COLD BOOT WARM BOOT



8 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



9 © 2022 Arm

Error handling and return values

• After cold/warm boot up and initialization, RMM returns control back to RMMD 
through SMC_RMM_BOOT_COMPLETE SMC call
• This call only accepts one argument, an error code in x1

• Upon error, whether it happens during cold or warm boot, RMM will abort the boot 
process and it will be made unavailable to all the CPUs as to present a symmetric view 
to the entire system.



10 © 2022 Arm

Error handling and return values

Error Code Description ID

E_RMM_BOOT_SUCCESS Boot successful 0

E_RMM_BOOT_ERR_UNKNOWN Unknown error -1

E_RMM_IFC_VERSION_INVALID Boot interface version reported by RMMD is not supported by RMM -2

E_RMM_BOOT_CPUS_OUT_OF_RANGE RMMD reported a maximum number of CPUs larger than the 
maximum supported by RMM

-3

E_RMM_BOOT_CPU_ID_OUT_OF_RANGE Current CPU ID is higher than the maximum reported by RMMD -4

E_RMM_BOOT_INVALID_SHARED_BUFFER Invalid pointer to shared buffer area -5

E_RMM_BOOT_MANIFEST_VERSION_NOT_SUPPORTED Version reported by the boot manifest not supported by RMM -6

E_RMM_BOOT_MANIFEST_DATA_ERROR Error parsing the core boot manifest -7



11 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



12 © 2022 Arm

Interface (and manifest) versioning

• The EL3 – RMM interface is versioned to ease compatibility between versions.

• Version number (passed through x1) is 32 bits-wide with bit 31 set as RES0
• VERSION_MAJOR (Bits [16:30])

• This value is increased iff the changes to the Boot Interface ABI break compatibility with previous versions.

• VERSION_MINOR (Bits [0:15])
• This value is increased iff the changes to the Boot Interface ABI do not break backwards compatibility with 

previous versions or
• It is reset to 0 upon VERSION_MAJOR update.

• RES0 field
• For consistency with other modules' versioning on RMM.



13 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



14 © 2022 Arm

Boot Manifest details
• Common to all platforms.

• First field corresponds to the version 
number (mandatory).

• Can grow up to 1 page size.

• Must be allocated inside the RMM –
EL3 Shared buffer.

• It caters for per-platform data.
• The platform part of the manifest must fall inside the shared area and not overlap with the 

core manifest.
• Macros will be provided on TF-A to get a valid pointer for the platform manifest data.

• The offset of each component on the manifest is enforced by the spec.



15 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



16 © 2022 Arm

RMM <-> EL3 Runtime calls – RMM initiated



17 © 2022 Arm

RMM <-> EL3 Runtime calls – NS Initiated
• The specification defines the implementation defined register switch convention 

between RMM and EL3 when NS world is the client.

• EL3 FW is seen as a service provider.

• Steps 3 & 4 are optional.



18 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



19 © 2022 Arm

Shared buffer management during EL3 <-> RMM interaction

• The shared buffer is meant to be used during EL3 <-> RMM communications, to pass 
large data structures.
• Platform tokens or keys

• RMM sees EL3 as a service provider. Only RMM can initiate communications via SMC.

• When the shared buffer is needed in a communication (regardless of the data 
direction), RMM is responsible of locking and own the buffer to avoid concurrent 
accesses or other race conditions.

• EL3 assumes that the PE making the service call has exclusive access to the shared 
buffer.

• It is RMM responsibility to unlock and free the shared buffer upon request termination.



20 © 2022 Arm

Shared buffer management during EL3 <-> RMM comms.



21 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



22 © 2022 Arm

RMM <-> EL3 world switch register convention

• EL3 is expected to maintain a register context specific to each world and it will save and 
restore the register appropriately.

• EL3 must maintain a separate register context for
• GPRs (x0 – x30) as well as sp_el0 and sp_el2 stack pointers.
• EL2 system register context for all enabled features by EL3, including registers with _EL2 prefix.
• EL2 physical and virtual timer registers must not be included in the register context.

• EL3 will not save some registers as mentioned below. It is responsibility of RMM to save 
them if the Realm World makes use of them.
• FP/SIMD registers
• SVE registers
• SME registers
• EL1/0 registers



23 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



24 © 2022 Arm

Runtime services – SMC_RMMD_GTSI_DELEGATE
0xC4001B0

• Request EL3 to delegate a memory granule

Name Register Field Type Description

FID x0 [63:0] Uint64 Command FID

PA x1 [63:0] Address Physical Base Address of the granule to delegate

Name Register Field Type Description

Error x0 [63:0] Error Code Command return status

Input Values:

Output Values:



25 © 2022 Arm

Runtime services – SMC_RMMD_GTSI_UNDELEGATE
0xC4001B1

• Request EL3 to undelegate a memory granule

Name Register Field Type Description

FID x0 [63:0] Uint64 Command FID

PA x1 [63:0] Address Physical Base Address of the granule to undelegate

Name Register Field Type Description

Error x0 [63:0] Error Code Command return status

Input Values:

Output Values:



26 © 2022 Arm

Runtime services – SMC_RMM_GET_REALM_ATTEST_KEY
0xC4001B2

• Retrieve the Realm Attestation Key from EL3

Name Register Field Type Description

FID x0 [63:0] Uint64 Command FID

PA x1 [63:0] Address PA where to store the Realm Attestation Key. The 
PA must belong to the shared buffer

BSize x2 [63:0] Size Size in bytes of the Realm Attestation Key Buffer

Curve x3 [63:0] Enum Type of the elliptic curve to which the requested 
attestation key belongs to

Name Register Field Type Description

Error x0 [63:0] Error Code Command return status

PTSize x1 [63:0] Size Size of the Realm Attestation Key

Input Values:

Output Values:



27 © 2022 Arm

Runtime services – SMC_RMM_GET_REALM_TOKEN
0xC4001B3

• Retrieve the platform token from EL3

Name Register Field Type Description

FID x0 [63:0] Uint64 Command FID

PA x1 [63:0] Address PA of the platform attestation token. The challenge 
object is passed in this buffer. The PA must belong to 
the shared buffer

BSize x2 [63:0] Size Size in bytes of the platform attestation token buffer

CSize x3 [63:0] Size Size in bytes of the challenge object. It corresponds 
to the size of one of the defined SHA algorithms

Name Register Field Type Description

Error x0 [63:0] Error Code Command return status

PTSize x1 [63:0] Size Size of the platform token

Input Values:

Output Values:



28 © 2022 Arm

Agenda
• Requirements

• Boot process

• Error handling and return values

• Versioning

• Boot Manifest details

• RMM <-> EL3 Runtime calls

• Shared buffer management during EL3 <-> RMM calls

• RMM <-> EL3 World switch register convention

• Runtime Services

• Implementation details



29 © 2022 Arm

Implementation details – TF-A Boot process



30 © 2022 Arm

Implementation details

• The shared buffer area is a single page of 
statically allocated memory. It can be used by 
any CPU.

• BL2 maps the REALM area to load the RMM 
image.

• BL31 (Root) maps the shared buffer area with 
the Realm PAS attributes.

• The Realm and shared buffer areas are mapped 
as a single GPT block with same attributes 
(PAS_REALM) as both areas can only be 
accessed by the Realm world (and from Root)

• The shared buffer area is available for the whole 
lifecycle of the system.



31 © 2022 Arm

Boot Manifest details

• plat_rmmd_load_manifest() must be implemented by the platform 
provider.

• It receives a pointer to a manifest, which it can populate the boot parameters.

• The platform is responsible for defining a platform manifest data structure and 
populate it if necessary.



© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה



© 2022 Arm

The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks


