Javier Almansa Sobrino
23 Jun 2022

© 2022 Arm

Agenda

* Requirements

* Boot process

* Error handling and return values

* Versioning

* Boot Manifest details

* RMM <-> EL3 Runtime calls

* Shared buffer management during EL3 <-> RMM calls
* RMM <-> EL3 World switch register convention

* Runtime Services

* Implementation details

2 ©2022Arm 0 rm

Requirements

* RMM needs to be as platform independent as possible
- Support for PIE

- Needs to be able to receive configuration parameters at boot time.
« RMM has minimal platform specific differentiation at build time
- RMM does not depend on stages prior to BL31 and its configuration is dependent of the configuration
mechanism used for the EL3 firmware
« This would allow partners to use their own BL2/BL1 image and any configuration mechanism (DT, FCONF,
hardcoded parameters). BL31 would parse and extract the relevantinfo for RMM.
« RMM should be EL3 firmware agnostic
« When possible, we should make no assumption about the underlying EL3 software.

- A contract between EL3 and RMM is needed to allow the former to pass platform information to the latter,
such as

o Number of CPUs
o Address range for peripherals (e.g UART)
o Shared memory buffer (more on this later)

3 ©2022Arm 0 rm

Requirements

* The information will be passed from EL3 to RMM via a register contract between both
parties or via a Boot Manifest (or both).

 RMM may require services from EL3 FW (e.g, to get attestation keys or to delegate or

undelegate memory granules)
- A formal spec of the services is required.

* The spec defines the switch register convention between RMM and EL3, part of the
SMCCC contract, when NS world is the client.

* Manage compatibility and migration between EL3 and RMM as the interface evolves to
cater for future requirements.

4 ©2022Arm 0 rm

Agenda

* Boot process

5 ©2022Arm a rm

6

Boot process

The boot process is initiated by the Root world (EL3 Firmware)

Realm World

Normal World

Secure World

EL1/0

Realm User Space

Rich OS + User Apps

Trusted OS + Trusted Apps

Hypervisor

© 2022 Arm

-

EL3/Root World

~

EL3 FW

el3_fw_init()

[

-

Realm World

RMM

Optional

runtime
service calls

First entry to RMM (context Jwitch]
-._L

-———————————

L

Return contrdl b

/

-

-——

hck to EL3 ‘context switch)

Read boot manifest and
perform any critical/early

HW Initialization
(e.g UART, MMU)

Continue with the rest
of the initialization

arm

Boot process

RMM accepts up to four arguments, stored in registers x0 to x3. A proposal for the v0.1
Boot Interface (argument usage) is:

Register
x0

x1

X2
X3

x4 - X7

7 © 2022 Arm

COLD BOOT

Value

Linear index for this PE. This index starts

from 0 and must be less than
PLATFORM_CORE_COUNT

RMM - EL3 Interface Version (0.1 for this
spec)

PLATFORM_CORE_COUNT

Base PA for the shared buffer used for
communication between EL3 and RMM.

RESO

WARM BOOT
Register Value
x0 Linear index for this PE. This index starts

from 0 and must be less than
PLATFORM_CORE_COUNT

x1 - x7 RESO

arm

Agenda

* Error handling and return values

8 ©2022Arm a rm

Error handling and return values

* After cold/warm boot up and initialization, RMM returns control back to RMMD
through SMC_RMM_BOOT_COMPLETE SMC call

- This call only accepts one argument, an error code in x1

* Upon error, whether it happens during cold or warm boot, RMM will abort the boot

process and it will be made unavailable to all the CPUs as to present a symmetric view
to the entire system.

9 ©2022Arm a rm

Error handling and return values

rorcode loesspon o

E_RMM_BOOT_SUCCESS Boot successful 0
E_RMM_BOOT_ERR_UNKNOWN Unknown error -1
E_ RMM_IFC_VERSION INVALID Boot interface version reported by RMMD is not supported by RMM -2
E_ RMM_BOOT_CPUS_OUT_OF_RANGE RMMD reported a maximum number of CPUs larger than the -3
maximum supported by RMM
E_RMM_BOOT_CPU_ID_OUT_OF_RANGE Current CPU ID is higher than the maximum reported by RMMD -4
E_ RMM_BOOT_INVALID_SHARED_BUFFER Invalid pointer to shared buffer area -5
E_ RMM_BOOT_MANIFEST_VERSION_NOT_SUPPORTED Version reported by the boot manifest not supported by RMM -6
E_ RMM_BOOT_MANIFEST_DATA_ERROR Error parsing the core boot manifest -7

10 © 2022 Arm a r m

Agenda

* Versioning

11 ©2022Arm a r m

Interface (and manifest) versioning

* The EL3 — RMM interface is versioned to ease compatibility between versions.

* Version number (passed through x1) is 32 bits-wide with bit 31 set as RESO

-« VERSION_MAJOR (Bits [16:30])

- Thisvalueis increased iff the changes to the Boot Interface ABI break compatibility with previous versions.
« VERSION_MINOR (Bits [0:15])

- This valueis increased iff the changes to the Boot Interface ABI do not break backwards compatibility with

previous versions or
« Itis reset to 0 upon VERSION_MAJOR update.

- RESO field
- For consistency with other modules' versioning on RMM.

Bit 21 Bit 16 Bit O
RESO VERSION MAJOR VERSION MINOR

12 ©2022Arm a r m

 Boot Manifest details

13 ©2022Arm 0 r m

Boot Manifest details

* Common to all platforms.

"'rl { * First field corresponds to the version
intptr ¢ plat dato number (mandatory).
mm manifest t, version) == o, * Can grow up to 1 page size.
 Must be allocated inside the RMM —
EL3 Shared buffer.

rmm_manifest t version unaligned);
rmm manifest t, plat data) == 8,

rmm manifest t plat data unaligned);

* It caters for per-platform data.

- The platform part of the manifest must fall inside the shared area and not overlap with the
core manifest.
- Macros will be provided on TF-A to get a valid pointer for the platform manifest data.

* The offset of each component on the manifest is enforced by the spec.

14 © 2022 Arm 0 r m

° RMM <-> EL3 Runtime calls

15 © 2022 Arm 0 r m

RMM <-> EL3 Runtime calls — RMM initiated

Realm World Normal World Secure World

EL1/0 Realm User Space Rich OS + User Apps Trusted OS + Trusted Apps

- -
1 g 2 b
EL3

16 2022 Arm a rm

RMM <-> EL3 Runtime calls — NS Initiated

The specification defines the implementation defined register switch convention
between RMM and EL3 when NS world is the client.

EL3 FW is seen as a service provider.
e Steps 3 & 4 are optional.

Realm World Normal World Secure World

EL1/0 Realm User Space Rich OS + User Apps Trusted OS + Trusted Apps

L7
EL2 RMM Hypervisor SPM
4
5 2 1

17 © 2022 Arm

arm

* Shared buffer management during EL3 <-> RMM calls

18 © 2022 Arm a r m

Shared buffer management during EL3 <-> RMM interaction

* The shared buffer is meant to be used during EL3 <-> RMM communications, to pass

large data structures.
- Platform tokens or keys

* RMM sees EL3 as a service provider. Only RMM can initiate communicationsvia SMC.

* When the shared buffer is needed in a communication (regardless of the data
direction), RMM is responsible of locking and own the buffer to avoid concurrent
accesses or other race conditions.

* EL3 assumes that the PE making the service call has exclusive access to the shared
buffer.

* Itis RMM responsibility to unlock and free the shared buffer upon request termination.

19 ©2022Arm a r m

Shared buffer management during EL3 <-> RMM comms.

20 © 2022 Arm

/

EL3/Root World

~

EL3 Firmware

I

I

I

|

I
1

a RMM

setup_platform_token()

get and lock shared area()

Block until
shared area
is free

S5MC call

-~}
Process public hash valug

|

Copy platform token

= ===

shared buffer.

The SMC can pass a pointer to a PA
to ELC as long as it belongs to the

Copy public hash value to buffer

unlock_shared_area()

\

arm

* RMM <-> EL3 World switch register convention

21 ©2022Arm a rm

RMM <-> EL3 world switch register convention

* EL3 is expected to maintain a register context specific to each world and it will save and
restore the register appropriately.

* EL3 must maintain a separate register context for
- GPRs (x0—x30) as well as sp_el0 and sp_el2 stack pointers.
- EL2 system register context for all enabled features by EL3, including registers with _EL2 prefix.
- EL2 physical and virtual timer registers must not be included in the register context.

* EL3 will not save some registers as mentioned below. It is responsibility of RMM to save

them if the Realm World makes use of them.
- FP/SIMD registers
- SVE registers
- SME registers
- EL1/0 registers

22 ©2022Arm a r m

e Runtime Services

23 © 2022 Arm a r m

Runtime services —SMC_RMMD_GTSI_DELEGATE
OxC4001B0O

* Request EL3 to delegate a memory granule

Input Values: mm

[63:0] Uint64 Command FID
PA x1 [63:0] Address Physical Base Address of the granule to delegate

Output Values: Name | Register | Field [Type ___|Descripton

Error x0 [63:0] Error Code Command return status

arm

24 © 2022 Arm

Runtime services — SMC_RMMD_GTSI UNDELEGATE
OxC4001B1

* Request EL3 to undelegate a memory granule

Input Values: mm

[63:0] Uint64 Command FID
PA x1 [63:0] Address Physical Base Address of the granule to undelegate

Output Values: Name | Register | Field [Type ___|Descripton

Error x0 [63:0] Error Code Command return status

arm

25 © 2022 Arm

Runtime services —SMC_RMM _GET REALM_ATTEST KEY
0xC4001B2

e Retrieve the Realm Attestation Key from EL3

Input Values: mm

[63:0] Uint64 Command FID
PA x1 [63:0] Address PA where to store the Realm Attestation Key. The
PA must belong to the shared buffer
BSize X2 [63:0] Size Size in bytes of the Realm Attestation Key Buffer
Curve x3 [63:0] Enum Type of the elliptic curve to which the requested

attestation key belongs to

outputvalues: | N e

Error x0 [63:0] Error Code Command return status

PTSize x1 [63:0] Size Size of the Realm Attestation Key

26 © 2022 Arm a r m

Runtime services —SMC_RMM_GET _REALM _ TOKEN
0xC4001B3

* Retrieve the platform token from EL3

Input Values: mm

[63:0] Uint64 Command FID

PA x1 [63:0] Address PA of the platform attestation token. The challenge
object is passed in this buffer. The PA must belong to
the shared buffer

BSize X2 [63:0] Size Size in bytes of the platform attestation token buffer

CSize x3 [63:0] Size Size in bytes of the challenge object. It corresponds
to the size of one of the defined SHA algorithms

outputvalues: | N e

Error x0 [63:0] Error Code Command return status

PTSize x1 [63:0] Size Size of the platform token

27 © 2022 Arm a r m

* Implementation details

28 ©2022Arm 0 r m

29

Implementation details — TF-A Boot process

© 2022 Arm

/

EL3/Root World

\\

std_svc RMMD context mgmt.c

bl31_main

rmmd_setu
— 0 Generate boot manifest

into the shared area

Pre-requisite: EL3 Tirmware
has allocated and mapped

a memory area to share with
RMM. EL3 has mapped this
area into REALM space.

Setup boot parameters
for RMM in x0 to x3

{
I
I

-

Realm World

\

RMM

Y

I

Read boot manifest and
perform any critical/early
initialization

HW Initialization
(e.g UART, MMU)

Before finishing the b
RMM can request Runtim
from EL3 Firmware.

oot process,
e Services

-
-
cm_setup_context()
_____________ |

. |
I - rmm_init()
I I

First entry to RMM (context switch)
I
I I
I I
I I
I I
' I
Legend e~ = - oo] Lo]
Return control back tolEL3 (context switch)
. RMM Setup
oo PCcooooooooshooooooooo

D RMM Cold Boot Entry |

N\

Continue with the rest
of the initialization

arm

Implementation details

30 ©2022Arm

The shared buffer area is a single page of
statically allocated memory. It can be used by
any CPU.

BL2 maps the REALM area to load the RMM
image.

BL31 (Root) maps the shared buffer area with
the Realm PAS attributes.

The Realm and shared buffer areas are mapped
as a single GPT block with same attributes
(PAS_REALM) as both areas can only be
accessed by the Realm world (and from Root)

The shared buffer area is available for the whole
lifecycle of the system.

arm

Boot Manifest details

plat rmmd load manifest(rmm manifest t *manifest)

manifest !=

manifest->version =
manifest-=>plat data =

return 0;

e plat_rmmd_load_manifest () mustbe implemented by the platform
provider.

* It receives a pointer to a manifest, which it can populate the boot parameters.

* The platform is responsible for defining a platform manifest data structure and
populate it if necessary.

31 ©2022Arm

arm

arm

2022 Arm

Thank You
Danke
Gracias
Grazie
G
HYHED
Asante
Merci

L AR L T
Tddlq
Kiitos

B
SRIBIG
NTIN

2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

