
© 2022 Arm

Soby Mathew, Zelalem Aweke

25-01-2022

Refactor Context mgmt.
in TF-A

TF-A Tech Forum

2 © 2022 Arm

Introduction

The context management library in TF-A provides helper routines for initialization and
switching CPU context during world switch.
• BL31 maintains CPU Context for each world which is initialized during cold boot. CPU features are

enabled depending on the EL3 sysregs programmed.
• At runtime, depending on the SMC/event, SPMD/RMMD invokes context management helpers to save

and restore the context.

Due to the gradual evolution of this library over time, the current state has made it a
maintenance hazard and prone to programming errors.

The agenda is to discuss the overall design direction on how to refactor the lib.
• Some of the details may undergo further refinement if implementation shows difficulties.

3 © 2022 Arm

Design Principles

Decentralized model for context mgmt.
• See cm_setup_context()
• Move world responsibility to world dispatcher and decentralize the management.

EL3 should only initialize immediate used lower EL
• Since it is likely that EL2 is managing the EL1 context , EL3 need not initialize this.
• To maintain confidentiality between worlds, it may be necessary to restore EL1 context.

Depends on how SPM and RMM is managing EL1 context.

Maintain EL3 sysregs which affect lower EL within CPU context
• Allows per-world control of traps/feature enablement.
• This is the pattern followed more or less in code today.

Allow more flexibility for Dispatchers to select feature set to save and restore
• See el2_sysregs_context_save()
• Break up the monolithic into several smaller functions and allow dispatchers to choose.

https://github.com/ARM-software/arm-trusted-firmware/blob/master/lib/el3_runtime/aarch64/context_mgmt.c
https://github.com/ARM-software/arm-trusted-firmware/blob/c8076a0e696243533b2e8f6673a5600dc90bd638/lib/el3_runtime/aarch64/context.S

4 © 2022 Arm

Introducing the Root Context – why is it needed ?

5 © 2022 Arm

Context mgmt. with Root context

© 2022 Arm

Proposed Changes

7 © 2022 Arm

1. Cleanup context registers

Cleanup EL3 context

Add more registers that control features/traps for lower Els to EL3 context

Registers that don't need to have different values across the worlds can be

removed from this context

Cleanup EL2 context

Remove registers that are only accessible from Secure state from EL2 context

8 © 2022 Arm

2. Cleanup cm_setup_context

Split cm_setup_context and move security state specific logic to corresponding
functions:
• cm_setup_common – common inits
• cm_setup_secure_context – Secure state specific inits, used by SPMD
• cm_setup_realm_context – Realm state specific inits, used by RMMD
• cm_setup_ns_context – NS state specific inits, used by PSCI/BL31

Same interface as cm_setup_context

Legacy code can keep using cm_setup_context and can transition gradually

9 © 2022 Arm

3. Alternative flow for first exit to NS world

Today cm_prepare_el3_exit is used to exit to NS world from EL3 the first time

Current implementation does the following:
1) Directly initializes EL2 registers for two NS cases:

For exiting to NS-EL2 (HYP mode)
For exiting to NS-EL1 (SVC mode) - skip EL2 config

2) Enables features for non-secure case
3) Restores EL1 context with cm_el1_sysregs_context_restore for

all cases (secure/non-secure)
4) Sets next context with cm_set_next_eret_context

10 © 2022 Arm

Alternative flow when CTX_INCLUDE_EL2_REGS is enabled

Move (1) and (2) to cm_setup_ns_context and do the initializations using context
registers

Then later restore NS context, similar to what SPMD and RMMD do:

*cm_el1_sysregs_context_restore (NS) is needed for exit to EL2 to clear any latent values in EL1 regs
after Secure world initialization. But this can likely be optimized.

If legacy cannot be supported after rework, a variant `cm_prepare_el3_exit_ns` will be
created.

cm_el2_sysregs_context_restore (NS)
cm_el1_sysregs_context_restore (NS)
cm_set_next_eret_context (NS)

cm_prepare_el3_exit (NS)

11 © 2022 Arm

e.g. PSCI CPU power down

psci_suspend_to_pwrdown_start (ep)

cm_setup_common (ctx, ep)
cm_setup_ns_context (ctx, ep)

cm_init_my_context(ep)

psci_cpu_suspend_finish (…)

cm_prepare_el3_exit_ns()
cm_el2_sysregs_context_restore (NS)
cm_el1_sysregs_context_restore (NS)
cm_set_next_eret_context (NS)

Current flow

cm_setup_context(ctx, ep)

cm_init_my_context(ep)

psci_cpu_suspend_finish (…)

cm_prepare_el3_exit(NS)

psci_suspend_to_pwrdown_start (ep)

New flow

12 © 2022 Arm

4. Cleanup cm_el2_sysregs_context_save/restore

Currently these functions call el2_sysregs_context_save/restore assembly

functions which do all EL2 register saving/restoring

New proposal:
• Use el2_sysregs_context_save/restore only for common registers (maybe rename to

el2_sysregs_context_save/restore_common)

• Move feature specific register save/restore out of el2_sysregs_context_save/restore
into their own assembly functions eg : el2_sysregs_context_feat_xxx_save/restore

• SPMD and RMMD can choose which functions to call dynamically or using feature build flags

13 © 2022 Arm

5. Add Root context

Prototype the changes and assess the impact on the code base
• Identify registers that should be part of root_exc_context
• Implement prototype to assess the impact on binary size and

SMC call response latency

Depending on results, we need to see how best to take it forward

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

Click to add text

