
© 2020 Arm Limited (or its affiliates)

Minos Galanakis & Jamie Fox
13/02/2020

Hey Compiler,

Where did you put that
object?

section("SFN“) and a linking for PSA Level 2+

2 © 2020 Arm Limited (or its affiliates)

The “SFN” section
Tagging objects for Secure unpriviledged section

• Currently secure api’s are using the SFN attribute as a way of tagging methods, in order
to be captured by the linker and placed into the TFM_UNPRIV_CODE section.

• The problem arises when using “const” method variables assuming that they will be
placed in the .rodata section.

• The behavior of compilers is non-deterministic, even between different versions of the
same toolchain, and can vary between different levels of optimization. The way a const
is handled is a compile-time construct.

3 © 2020 Arm Limited (or its affiliates)

A quick example
How could this affect an ARoT to PROT call

• Where will the
“tfm_crypto_pack_iov

ec iov” be stored?
1. ARMCLANG compiler

6.10 will place it in
.rodata

2. ARMCLANG compiler
6.12/6.13 will place
it in stack

3. GCC gcc version
7.2.1 will place it in
stack

• There is a chance that
method and the const
data will not be placed
not in the same region

tfm_crypto_secure_api.c
__attribute__((section("SFN")))

psa_status_t psa_allocate_key(psa_key_handle_t *handle)

{

#ifdef TFM_CRYPTO_KEY_MODULE_DISABLED

return PSA_ERROR_NOT_SUPPORTED;

#else

psa_status_t status;

const struct tfm_crypto_pack_iovec iov = {

.sfn_id = TFM_CRYPTO_ALLOCATE_KEY_SID,

};

psa_invec in_vec[] = {

{.base = &iov, .len = sizeof(struct tfm_crypto_pack_iovec)},

};

psa_outvec out_vec[] = {

{.base = handle, .len = sizeof(psa_key_handle_t)},

};

4 © 2020 Arm Limited (or its affiliates)

PSA LV2 ARoT to PRoT call example

Secure Partition Manager (SPM)

PRoT
Service XX

PSA
Crypto

PSA
Protected
Storage

Arot
Service XX

PSA Root of Trust PSA Application Root of Trust

Non Secure OS

Secure Execution EnvironmentNon Secure Execution Environment

Secure privileged (const)
Secure unpriviledged

(SFN/ SPRTL)

Non
Secure

Callable

P
SA

 A
P

I C
A

LL

5 © 2020 Arm Limited (or its affiliates)

PSA LV2 PRoT to PRoT call example

Secure Partition Manager (SPM)

PRoT
Service XX

PSA
Crypto

PSA
Protected
Storage

Arot
Service XX

PSA Root of Trust PSA Application Root of Trust

Non Secure OS

Secure Execution EnvironmentNon Secure Execution Enviroment

Secure privileged (const)
Secure unpriviledged

(SFN/ SPRTL)

Non
Secure

Callable

PSA API CALL

6 © 2020 Arm Limited (or its affiliates)

PSA LV2 Non Secure to Secure PRoT call example

Secure Partition Manager (SPM)

PRoT
Service XX

PSA
Crypto

PSA
Protected
Storage

Arot
Service XX

PSA Root of Trust PSA Application Root of Trust

Non Secure OS

Secure Execution EnvironmentNon Secure Execution Environment

Secure privileged (const)
Secure unpriviledged

(SFN/ SPRTL)

Non
Secure

Callable

NS PSA API CALL

7 © 2020 Arm Limited (or its affiliates)

Why would that be a problem?

• With PSA Level 1, all partitions share access privileges for all the segments in the secure
side.

• With PSA Level 2 and 3, access to the Secure Privileged .rodata is not guaranteed. In the
previous example, when Protected Storage calls PSA Crypto, the api call
psa_allocate_key will reside “SNF” section marked as TFM_UNPRIV_CODE while
the const iov parameter’s location is determined by the toolchain. It can be stored in
the stack, which will work, or in the .rodata of the PSA CRYPTO partition marked as
Privileged code, which will cause it to fail.

• The processor is executing secure non-priviledged code without dropping its privileged
state. It is replying on the MPU for guarantying the +ro state of the code.

8 © 2020 Arm Limited (or its affiliates)

What should we be aiming for?

• With an open source project aimed at supporting multiple tool-chains, the objects
should be placed in a deterministic way, so partitions and memory protection can be
planned and enforced correctly.

• It may be wise to group the common purpose methods into an object/library and
configure its properties and section during linking.

• If that approach is taken, what guarantees are there the API’s or the compiler will not
generate intermediate static objects, compromising security?

• Taking into consideration platform variations, there can be more than one configurable
ways of addressing the problem.

9 © 2020 Arm Limited (or its affiliates)

Minimizing impact

• This is a low risk item and does not currently compromise security.

• The “SFN” section will be removed, and the API calls will be bundled onto the Secure
Partition Runtime Library (design review at patch #3457)

• The design requirements for STRTL should extend to any code shared between secure
privileged and unprivileged(+ro, thread safe, added overhead for validating isolation)

• Const and static variables should be banned on all API calls.

• Contributions to API calls should be thoroughly inspected for gadgets.

• Further Suggestions?

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

