arm

o

=

Secure Partition Live
Activation Support

3

2

Madhukar Pappireddy £ 7 , |
Oct 2025 '

© 2025 Arm

Al-generated image

Agenda

-- Background

-- Live Firmware Activation

-- Partition Lifecycle Support

-- Requirements for SP Live Activation
-- Software architecture

-- Implementation overview

-- Challenges and constraints

-— Prerequisites

-~ References

-- Status

2 © 2025 Arm a r m

Background

-- Live Firmware activation allows firmware update without rebooting the system
-- A Secure Partition can be live activated based on guidance in FF-A v1.3 ALP2 spec
-~ Use cases: Code patching of secure services in datacenter/cloud environments

-- Requirement: Minimal disruption to the services

-- Constraint:
o Old and new SP instances must be compatible*
o Only UP SP (single execution context) supported
o Consequently, no need for system wide CPU Rendezvous

3 ©2025Arm 0 rm

4

Live Firmware Activation

-- Spec provides various SMC calls to orchestrate live activation of a platform
firmware component.

-- Assuming a simple scenario (i.e., no CPU Rendezvous, No reset)

© 2025 Arm

SMC
LFA_GET_INF
0

LFA_GET_INVE
NTORY

LFA_PRIME

LFA_ACTIVATE

Purpose

To query the LFA Agent for overall
information about the platform’s live
activation environment.

To discover properties and capabilities of
each live-activation-capable firmware
component.

To stage (load and authenticate) the new
firmware image for the target
component, preparing for activation.

To switch execution from the current
firmware image to the new image.

Called at the start to learn how many firmware components are
managed by the LFA Agent.

Enumerate through all components to check which can be live-
activated, whether CPU rendezvous is required, whether CPU
reset is needed, and to retrieve component GUIDs and flags.

Invoked (multiple times if needed) to copy the new firmware
image into secure memory and perform necessary validation,
without stopping the existing firmware yet.

Called after LFA_PRIME has completed. The call causes the LFA
Agent to stop the old firmware, activate the new image, and
resume operation.

arm

Partition Lifecycle Support

-- Provides guidance for:
o Full lifecycle of a partition
o Abort handling upon fatal errors

-- Starting an SP vCPU
-- Runtime of SP vCPU

5 ©2025Arm a rm

Partition Lifecycle Support

-- Extends the life of a Partition:
o From the time it is created

o Until it is destroyed or live activates
or restarted

-- Stopping an SP vCPU
-- Aborting an SP vCPU

6 ©2025Arm a rm

SP Live activation requirements

-- Framework state is preserved
-- If RX/TX buffers are mapped:

o Their contents are preserved
o Mapped at same VA or IPA in target Image as current Image

-- Bindigs of all VM and SP notifications are preserved
-- Pending state of all VM, SP and framework notifications is preserved

-- For memory regions shared/lent by another endpoint:
o Mapped at same VA or IPA in target Image as current Image
o With same memory attributes

-- Meta data associated with memory management transactions are preserved
- This allows target SP Image to perform the same operations on memory as before

7 ©2025Arm a rm

SP Live activation requirements

-- For stateful update, a special buffer is needed by an SP
-- This memory region helps to transfer implementation defined state

Base address specified by partition is:
o VA (for S-ELO partitions) or IPA (for S-EL1 partitions)

o Aligned to translation granule used by SP
-- Size is multiples of translation granules (equal to page size)
-- SPMC need not map it in its translation regime
-- Occupies the same physical address space in current and target SP image

8 ©2025Arm a rm

Software Architecture Overview

Normal World Secure World -- Live activation of a SP needs LFA and FFA
[} spec to be brought together

Kernel + TEE/FF-A Driver (LFA Client)

| |
| |
| |
! I
| |
|

\ j
\ /

S-EL2
Hypervisor (Optional) NS-EL2 Hafnium SPMC S-EL2

-- Figure showing various entities involved
in live activation flow & their roles

9 ©2025Arm a rm

LFA Flow — Firmware Discovery

Host CPUO Host CPU1+ EL3 CPUO EL3 CPUl+
(Normal World) (Normal World) {Secure/Root World) (Secure/Root World) | Platform Implementation I | Component implementation I

runtime_svc_init()

| std_svc_setup()

Ifa setup()

i

Ifa_initialize_components()

i

plat_Ifa_get_components()

-
-~
e return lfa_num_components J

Stash component info

: Firmware Store Update r

LFA GET INFO(selector = 0)

>

-« LFA.SUCCESS, Ifa_num_components

........................ fPercccnsivecenssvssssevee

loop / [for each fw_seq id < Ifa_num_components]
' LFA_GET_INVENTORY(fw_seq_id)

>
is_plat_Ifa_activation_pending(fw_seq_id)

-
> 1

ing_fl
pending flag e il

. Update flags[], UUID

LFA_SUCCESS, flags[], UUID

q rm Public © 2025 Arm 10

LFA Flow — Priming Firmware Component

LFA_PRIME(fw_seq_id)

ﬁ Priming Firmware Components }
>

| Sanity checks

-ID in range
- Activator exists

- Not already activated or primed

plat_Ifa_load_auth_image(fw_seq_id)

Auth success

component_prime_handler

Load, Auth, Measure, Stash

SUCCESS

LFA_SUCCESS, flags(]
(... I

arm

Public © 2025 Arm 11

LFA Flow — Activating Firmware Component

arm

LFA_ACTIVATE(fw seq_id)

Y

:Activatinn Phase - CPUO Primary :

| Sanity checks
-IDin range
- Mot already activated

- Matches current component in progress
- Prime is complete

extend_measurement(fw_seq_id)

SUCCESS 5
component_activate primary >
SUCCESS i
.(Se_:lctivation_pending = false
LA SUCCRSS
= %Activatiun Phase - CPU1+ Secondary :
LFA_ ACTIWATE(fw seq id) >
compeonent_secondary_init .
Hold CPU in secondary init IT
until CPUO completes activation
 Secondary init SUCCESS, i
(LTASUCCESS B e
Host CPUO Host CPUL+ EL3 CPUD EL3 CPUL1+ Platform Implementation Component Implementation
(Normal World) (Normal World) (Securef/Root World) (Secure/Root Weorld)

Public © 2025 Arm

12

Implementation Overview

-- Live Activation of any firmware component leverages the agent framework in TF-A

-- Unlike BL31 and RMM, SP not a standardized component
-- Hence additional complexity
-- Responsibility is with platform port

13 © 2025Arm a r m

Implementation Overview

-- SPMC and SP only understand FF-A interfaces/protocols
-- Need an intermediary entity to translate LFA to FF-A calls
- Hence the need for an LSP at EL3, managed by SPMD

-- LSP must be independently implemented by each platform to suit their needs
-- Aim is to provide common helper utilities to support SP live activation

14 © 2025Arm

arm

Software Architecture Overview

-- Important FF-A framework messages for LFA story:
o Partition Stop request
o Partition Stop response
o Live activation Start request
o Live activation Start response
o Live activation Finish request
o Live activation Finish response

15 © 2025Arm a r' m

16

Software architecture: Live Activation flow chart

© 2025 Arm

LFA Client

LFA Agent

.
1 SMC{LFA_ACTIVATE, fw_seq_id of SP) _
’-I

Parform sanity checks Ty

| 2 sp_activator()
!

Determine SP 1D from fw_seq_id.

Obtain partition properties and ensure live activation support

L
-

Obtain address & size of target SP package from Staging area.

Create partition live activation START request
with SP ID, base addresses and sizes.

ERET(FFA_MSG_SEND_DIRECT _RECQ,
Partition live activation START request)

b

Check preconditions to start live activation.

Place SP in Stopped state.
Preserve Framework state of the SP.

Create partition STOP request (live activation)
for the SP and place it in Stopping state.

ERET(FFA_MSG _SEND_DIRECT_REQ,
Partition STOP request for live activation})

I~

FPerform cleanup and save internal state into SP
live state buffer.

Create STOP response with SUCCESS and
return base address & page count of the buffer.

=

SMC{FFA_MSG_SEND_DIRECT_RESP,
Partition STOP response)

[

-

Allocate resources for target SP.
Load target SP package (replaces current SFP package).
Move SP to Created state.

.

Create live activation START response (SUCCESS).

SMC{FFA_MSG_SEND_DIRECT_RESF,

FPartition live activation START response)

7
-

arm

Software architecture: Live Activation flow chart

SMC(FFA_MSG_SEND_DIRECT RESP,

6 Partition live activation START response)

-
-

Create live activation FINISH request for the SP.

ERET(FFA_MSG_SEND _DIRECT REQ,

l
I
I~ Partition live activation FINISH request)

7

I

I

I

I

| |
Extend measurements of the target SP image. W :
I

I

1

I

1

1

|

ko
o

Check preconditions to finish live activation.
Place SP in Starting state.

: 8 ERET(Live Activation Status = 1) >

Restore saved state from SP live state buffer. b}

Finish live activation and enter Waiting state. b}

9 SMC(FFA_MSG_WAIT)

I
I
I
I
I
I
I
I
I
I.-f
[

Create live activation FINISH response (SUCCESS). ﬁ

SMC{FFA MSG SEND DIRECT RESP,
Partition live activation FINISH response)

< 11 Retum LFA_SUCCESS

<12 ERET(LFA SUCCESS)

1

|

|

|

|

|

|

|

|

1

|

|

1

1

|

|

| |

| 1

| 1

| 1

| 1

| 1

| 1

| 1

| 1

| 1

| 1
1

< .

| 1

| 1

| 1

| |

| 1

| 1

| 1

Client LFA Agent >
17 © 2025Arm a r m

Challenges: SP image layout

-- What can be preserved depends on how
memory is allocated to SP

-- Hafnium: pre determined load address
and memory size for each SP:

o SP1: Addr = 0x7100000; size: 0x100000
o SP2: Addr = 0x7200000; size: 0x100000

-- SP Package: special container

-- Typically contains SP image binary
(PROGITS only) and other payloads

-- Must be large enough to host NOBITS
segments during initialization

18 © 2025Arm

Physical
Address Space

3P1 Allocation

SP Package

Header

Partition manifest

* Code segment

HOB

* rodata
* rwdata

SP Image

* Miscellaneous

SP2 Allocation

ESP Package

* Symbol tables
* Relocation table
* Other meta data

Header

Partition manifest

SP Image

arm

Challenges: SP memory categorization

-- Working memory:
o Allocated by SPMC (specified as load-address in SPMC manifest)
o SP package gets loaded in runtime

-- Static memory regions :
o Declared in the SP manifest under "memory region" node

-- Static device regions:
o Declared in the SP manifest under "device region" node
-- Dynamic regions:
o Memory regions obtained by the SP via memory management transaction
o Example: memory donated by another endpoint using FFA_MEM_DONATE

19 ©2025Arm a r m

Challenges: SP Image layout

-- Hypothetical scenario: layout A
-- Active (working) state in rwdata or bss

-- Constraint: Hafnium performs in-place
live activation

-- Qutcome: Framework state cannot be
preserved

20 © 2025Arm

code

rodata

* FF-A RX/TX buffers

rwvdata

* FF-A Shared memory regions

= FF-A Lent memory regions

* FF-A live state buffer

Misc

* SP specific data

o As Lender

o As Lender

Borrowed memory

* FF-A Shared memory regions

* FF-A Lent memory regions

= As Borrower

= As Borrower

arm

Challenges: SP Image layout

-- Hypothetical scenario: layout B

-- Any working state pushed to SP live state
buffer before live activation

-+~ Take away: SP image to be carefully
curated

-- Categorize memory accessible to an SP
before & after Live Activation

21 ©2025Arm

code

rodata

rwdata

Misc

Static memory regions

= FF-A RX/TX buffers
= FF-A Shared memory regions

= FF-A Lent memory regions

Static buffers

= FF-Alive state buffer

= SP specific data

o As Lender

o As Lender

Borrowed memaory

* FF-A Shared memory regions

= FF-A Lent memory regions

o As Borrower

o As Borrower

arm

Challenges: SP donate memory

-- A memory region could be donated by SP (current instance) to another SP

-- Upon live activation, target instance's memory map conflicts with another SP
-- Needs to be addressed in spec

-- Possible solutions:

o Deny donate transaction
o Terminate live activation and put in ABORTED state

-- More corner cases?

22 ©2025Arm a r m

Conditions for SP live activation

-- Implications for state full update :
o Framework state or RXTX buffer must not overlap with working memory
o No outstanding FF-A memory transaction regions overlapping with working memory

-- Expectations from Platform/SP integrators:
o SP live state buffer and RXTX buffer from static memory regions

o SP manifest must be identical (Only code patching)
o The new instance's package must be similar to old instance (except Image)

- If these conditions are not met, SPMC will abort the partition.

23 ©2025Arm a r m

Prerequisites

-- Secure Partition
o Count of vCPU =1
o FF-A version >=v1.3
o Declare fields in partition manifest: "lifecycle-support" and "liveactivation-support"
o Must specify Image UUID
o No CPU Rendezvous required for UP SP
o Curate image and allocate memory regions

--SPMC: Hafnium shall support Live activation
--TF-A:

o SPD = spmd

o SPMD_SPM_AT SEL2=1

o ENABLE_SPMD LP =1
o Callbacks and hooks by platform port

24 ©2025Arm a r m

25

Sample partition manifest

-- Preserve framework state

Sdts-wly);

© 2025 Arm

P

compatible = "arm, ffa-manifest-1.08";

ffa-version = <=0x000100083=;

uuid = <=0x9458bb2d Ox353bdee2 Oxaa2d710c BOx99b73ddc=;
execution-ctx-count = <1>;

exception-level = =2=; /¥ S-EL1 */

execution-state = <=0=; /* AARCHG4 */

load-address = =0x6480000=;

entrypoint-offset = <@x2000:>;

xlat-granule = =0=; /* 4KiB */

messaging-method = =0x7=>;
ns-interrupts-action = <1>;
boot-order = =1=>;

notification-support; /* Receipt of notifications. #*/
gp-register-num = =8=;

/* Lifecycle support and Live activation fields. #*/
lifecycle-support;

abort-action = <1=; /* Destroy */
live-activation-support;
live-activation-register = =1=;

image-uuid = <0x962a7bf@ O0x174d471d OxabB6cB9e BOx5Cc3e254e>;

/* Boot Info */

boot-info {
compatible = "arm, ffa-manifest-boot-info";
ffa manifest;

:
device-regions {
compatible = "arm, ffa-manifest-device-regions";
uartl {
base-address = =0x00Q00000E8 Ax1lclaBlBEE=;
pages-count = <1>;
attributes = <0x3>; /* read-write #*,/

¥

sec_wdog {
/¥ SP8B5 Trusted Watchdog Module */
base-address = <0xEEE00000 BOxZad4920000=;

pages-count = =32=; /* Two 64KB pages */

attributes
interrupts

=0x3=; /* read-write =y
<56 Bx2980>;

memory-regions {

compatible = "arm, ffa-manifest-memory-regions"”;

live-state-buffer {

description = "live-state-buffer"”;
base-address = =0xE0EQ0000EE EOx6780000=;
pages-count = <1>;
attributes = «=0x3=>; /* read-write *,/
X
sp_heap: heap {
description = "heap";
base-address = <@xER0E0EEEE Ox6TEEEEE=>;
pages-count = <1l=;
attributes = =0x3=; /* read-write =y
¥:
sp_share_mem: secure-memory {
description = "share-memory";
base-address = =X Ex710E0E8=;
pages-count = <1>;
attributes = <0x3>; /f* read-write */
X
rxbuffer: rx-buffer {
description = "rx-buffer";
pages-count = =1=;
base-address = <@xEEQ000008 @x73I00000=;
attributes = =0x1l=; /* read-only */
¥:
txbuffer: tx-buffer {
description = "tx-buffer"[j]
pages-count = <1>;
base-address = =X Ex7301006=;
attributes = <=0x3=>; /* read-write =,/
X

References

-- FF-A v1.3 (ALP2), Ch. 18.10 (Live Activation)
-- Live Firmware Activation SMC Interface v1.0 (BETA)
-- TF-A Tech forum titled "TF-RMM Live Activation" on June 12th 2025

26 © 2025Arm a r m

Status

-- Prototyping live activation of a test SP in hafnium project
-- Closely mimics S-ELO StMM partition requirements

-- Looking for additional insights

-- Any concerns?

-- Questions?

27 © 2025Arm a r m

arm

2025 Arm

Thank You
Danke
Gracias
Grazie

157 157
HYHES
Asante
Merci
AL CF
Toddlq
Kiitos

=
SEIEIG]

nrIin
c,ﬁésal’csaﬁa)w

