0 Trusted Firmware A"

ﬂ.vr ';
LY .
4
®e -

S 5
S ;
+ ’

Lauren Wehrmeister
6/18/2020

7 © 2020 Arm Limited (orits affiliafés)

Agenda

* The Concept of Unit Testing

e Current Framework & Components
e Future Work

2 © 2020 Arm Limited (or its affiliates) a r m

The Concept of Unit
~ Testing

Levels of Software Testing

Unit testing
- Testing each unit separately

Integration testing
- Checking multiple interacting units together

System testing
- Testing the whole system against the specification

Acceptance testing
- Checking business requirements for delivery

© 2020 Arm Limited (or its affiliates)

Code
involved

in testing

arm

Unit Testing

* Testing of small, isolated software units

- Object-oriented unit - class
« Cunit - set of functions around a feature

e C/C++ unit tests and the code under test are compiled into an executable

* Advantages
- Less errors caused by lower abstraction level functions on higher levels
Validates the existing behavior in every run helps refactoring
Makes the programmer able to test rare events
Encourages modular software structure, because it’s hard to test spaghetti code
Helps documenting as it works as an example code
Another advantage in embedded environment is that is helps development without hardware

* Disadvantages
- It requires more work from the software developer (but it pays off later)
- It doesn’t test all the interactions between units so higher-level testing is still required

5 © 2020 Arm Limited (or its affiliates) a r m

Current Framework &
- Components

Current Framework

* The TF-A Unit Testing framework allows testing parts of C/C++ code.

* Currently only works internally to Arm as the c-picker tool is not available
outside Arm.

e At its current stage, the framework:

- Can define and build unit test cases, there are currently a few that exist

- Runs with Icov based code-coverage when compiled with GCC, which is the same as
used for FVP based TF-A code-coverage.

- Documentation exists for getting started, building, running and debugging tests

- Some basic mocks have been implemented for TF-A.

- c-picker tool created with can split code fragments from original code and map
coverage info back to original code location

7 © 2020 Arm Limited (or its affiliates) a r m

Components

e CMake — Build environment

* CppUTest — Unit test framework
» Includes CppUMock — Mocking framework

e c-picker — Python based code-cut tool for isolating functions
* trusted-firmware-a — Code under test

* tf-a-unit-tests — Unit test repository
* Unit tests
- Mocks
- Build system and utilities

8 © 2020 Arm Limited (or its affiliates) a r m

CMake

 CMake is a tool to describe and generate buildsystems chosen as the build
environment for the TF-A unit test framework

* We are currently integrating into TF-A -> Refer to Javier’s presentation on
CMake from past Tech Forum

 Motivation for Unit Test framework is that ctest is included
- ctest is an executable of CMake
- CMake-generated build trees created for projects that use the enable testing()

and add test() commands have testing support.
- ctest will run the tests and report results.

9 © 2020 Arm Limited (or its affiliates) a r m

CppUTest

* CppUTest is a C/C++ based unit xUnit test framework

* Why CppUTest?
- C/C++ support
- Small footprint (compared to the popular Google Test)
- Easy portability for embedded systems
» Built-in mocking system (CppUMock)
- Implements xUnit four-phase testing pattern
- Selective run of test cases
- Standard output format

10 © 2020 Arm Limited (or its affiliates) a r m

CppUTest Functionality

11

TEST GROUP

« Test suite

- C++ class

- Can contain additional variables and functions

TEST_SETUP, TEST_TEARDOWN

 Test fixture
« Called before and after each test case

TEST

- Test case

Function of a class

The class is inherited from the TEST_GROUP
TEST_GROUP members are accessible
Places global object

It’s constructor registers the test case

Assertions: CHECK_TRUE, LONGS_ EQUAL, etc.

© 2020 Arm Limited (or its affiliates)

#include <CppUTest/TestHarness.h>
#include "list.h"

TEST GROUP (List) ({
TEST_SETUP() {
list = list alloc();
}

TEST_TEARDOWN() {
list cleanup(list);
}

bool has_element (int value) {

for (int 1 = 0; 1 < list count(list); i++) {
if (list get (i) == value) { return true; }

}

return false;

}

List* list;
};

TEST(List, add one) {
const int test value = 5;

list add(list, test value);
bool result = has element();
CHECK TRUE (result)

arm

CppUTest Example - memcmp
Code

int memcmp (const void *sl, const void *s2,
size t len) {
const unsigned char *s = sl;
const unsigned char *d s2;
unsigned char sc;
unsigned char dc;

while (len--) {
sc = *s++;
dc = *d++;
if (sc - dc)
return (sc - dc);

return 0O;

12 © 2020 Arm Limited (or its affiliates)

//Test Suite
TEST GROUP (memcmp) { };

//Test Cases
TEST (memcmp, same) {

LONGS EQUAL (0, memcmp ("abc",
}

TEST (memcmp, first differs) {
LONGS EQUAL(!l, memcmp ("bbc",
}

TEST (memcmp, middle differs) {
LONGS EQUAL(”, memcmp ("adc",
}

TEST (memcmp, last differs) {
LONGS EQUAL(!l, memcmp ("abd",
}

"abc", 3))

"abc", 3))

"abc", 3))

"abc", 3))

arm

CppUTest Functionality

Test runner

 Runs all the collected test cases

#include <CppUTest/CommandLineTestRunner.h>

int main(int argc, char* argv[]) {
return RUN ALL TESTS (argc, argv);

13 © 2020 Arm Limited (or its affiliates) a r m

CppUMock

* CppUMock is a mocking framework built
in to CppUTest

#include <CppUTest/TestHarness.h>

* Allows a replacement of objects by mocks #include <CppUTestExt/MockSupport.h>
to simulate the behavior of real objects TEST GROUP (MockDocumentation) {

void teardown () {

mock () .clear () ;

bi
* mock() returns the global MockSupport void productionCode() {
- expectOneCall(functionName)/expectNCall mock () .actualCall ("productionCode”)
s(amount, functionName) '

. TEST (MockDocumentation, SimpleScenario) ({
Records expectation from the test case

mock () .expectOneCall ("productionCode") ;

- actualCall(functionName) productionCode () ;
Records actual call from the replaced mock () . checkExpectations () ;
function }

14 © 2020 Arm Limited (or its affiliates) a r m

CppUMock Functionality

* Expected / actual calls can be extended by specifying:
- onObject(object) — Checks whether the call was done to the right object
-with[type]Parameter(name, value) - Allows specifying and checking of
the call parameters
- return[type]Value() - Specifying the return value from function

* Other functions
-enable() / disable() —Enable/Disable the mocking framework
- tracing(enabled) / getTraceOutput()
- checkExpectation() - Checking for non-fulfilled function calls
- clear() - Clearing expectations

15 © 2020 Arm Limited (or its affiliates) a r m

C-picker

* Arm Python tool

* Allows unit-test flexibility and breaking dependency between C items
defined in the same file.

* These can not be separated otherwise, which limits mocking options.

16 © 2020 Arm Limited (or its affiliates) a r m

trusted-firmware-a

* Code under test
* The unit test build system expects a local copy of it
* Specified by setting the TF_A PATH variable

* The new build system of TF-A will fetch the unit test repository and test
itself

17 © 2020 Arm Limited (or its affiliates) a r m

tf-a-unit-tests

* Unit Test Framework stored in an internal Arm repository

e CMake modules

- FetchContent
- UnitTest — Function for defining unit test suites

* Unit test source files

* CppUMock based mocks for common parts of the TF-A code
- Platform
- Log
- Panic

* Root CMakelists.txt — Defines the workflow of the system
* Documentation

18 © 2020 Arm Limited (or its affiliates) a r m

Future Work

Future Work

* Determine how Unit Testing will fit in Test Strategy

- Optional or mandatory?
- Potential use to fill coverage holes

* Determine if and how Unit Testing should be publicly released

« Unit Test Framework
« C-Picker Tool

* Split CMake files to framework and build definition. Merge framework part to CMake
framework. This depends on the CMake framework being released first.

* Platform-ci based automation of unit testing of TF-A

* Documentation:
- Find a way to document test cases.

* Add unit tests for existing and new features.

20 © 2020 Arm Limited (or its affiliates) a r m

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
 Merci
. T

HYHED
Gracias

Kiitos

TN

Tddlq
S RIBIM]
NTIN

Backup Slides

Backup - The Concept of
~ UnitTesting

Unit testing

e xUnit — unit testing framework family, Kent Beck, Erich Gamma (Gang of Four)

« XUnit
— Has nothing to do with X Window System
- Smalltalk: SUnit, Java: JUnit = xUnit as a collective name
- Test runner — collects and runs tests cases
- Test case — testing block for a single case
- Test fixtures — each case has known context
— Test cases must not affect other test cases
- Test suites — common context for multiple cases
- Test execution steps
— Setup context
- Body of the test Four-
= Exercise code phase
= Verifying result pattern
— Teardown context
- Test result formatter — automated result processing

- Assertions — logical conditions

24 © 2020 Arm Limited (or its affiliates)

arm

Backup - Current
- Framework &
‘Components

CMake

* Required to be installed on the build machine

* Currently supported range of version: 3.11 - 3.15

- Ubuntu 16.04 LTS: 3.5
- Ubuntu 18.04 LTS: 3.10
 Arch Linux: 3.15

- MSYS2: 3.15

* Workaround
- Download and install CMake manually
- Install using pip: 3.15

e ctestis included

26 © 2020 Arm Limited (or its affiliates) a r m

CppUTest

* Fetched from official GitHub repository by the build system (CPPUTEST_URL)
* Latest release: v3.8 (CPPUTEST_ REFSPEC)

* Why CppUTest?
- C/C++ support
- Small footprint (compared to the popular Google Test)
- Easy portability for embedded systems
« Built-in mocking system (CppUMock)
- Implements four-phase testing pattern
- Selective run of test cases
- Standard output format

27 © 2020 Arm Limited (or its affiliates) a r m

https://github.com/cpputest/cpputest

C-picker

* Arm internal (currently) tool c-picker allows unit-test flexibility and allow breaking
dependency between C items defined in the same file. These can not be separated
otherwise, which limits mocking options.

* Python Based
* Requires python3 and pip installed on build machine
e Stored in an internal Arm repository

* Uses libclang Python interface for parsing the source
- clang dependency
- Not uniform across OS-es
- Currently the developer needs to handle this

28 © 2020 Arm Limited (or its affiliates) a r m

Scripts for testing the whole build system

* Currently used for checking compatibility of the build system
* Docker containers of various systems

* Can be published if they seem useful somewhere like in the ClI system

29 © 2020 Arm Limited (or its affiliates) a r m

‘Backup - Workflow

Workflow

* CMake time
- Checking TF-A location
- Checking required tools
— c-picker
- git
« CppUTest
— Fetching specified version
— Building library
— Using library as a CMake package
- Collecting test suites from included cmake files

e Build time — Building test suites
* ctest time — Running test suites

31 © 2020 Arm Limited (or its affiliates) a r m

Workflow

CMake time

[tf-a-unit-tests]S$S mkdir build && cd build
[build] S cmake —DTF_A;PATH=~/trusted—firmware—a -G"Unix Makefiles"

[...]
CMake output of fetching and building CppUTest

-—- Configuring done
—-—- Generating done
—-— Build files have been written to: tf-a-unit-tests/build

[build]s

32 © 2020 Arm Limited (or its affiliates) a r m

Workflow

Build time

[build]$ make -j

Scanning dependencies of target memcpy

[30%] Building CXX object CMakeFiles/memcpy.dir/common/main.cpp.o

[40%] Building CXX object CMakeFiles/memcpy.dir/tests/lib/libc/test memcpy.cpp.o
Scanning dependencies of target memcmp

[60%] Building CXX object CMakeFiles/memcmp.dir/common/main.cpp.o

70%] Building CXX object CMakeFiles/memcmp.dir/tests/lib/libc/test memcmp.cpp.o
90%] Linking CXX executable memcpy
Linking CXX executable memcmp

Built target memcmp

]
]
]
100%] Built target memcpy
]
d] S

* Building single test = each test is a Makefile target

[build]$ make memcmp

33 © 2020 Arm Limited (or its affiliates) a r m

Workflow

ctest

[build]$ ctest

Test project
1/2 Test #1: MEMCIMD + v vttt ittt ettt eeeeenennnns

2/2 TeST #2: MEMCPY t vt vttt ettt et eeeeeeneenenn.

100% tests passed, 0 tests failed out of 2

Start 1: memcmp

Start 2: memcpy

Total Test time (real)
[build]$ ctest -j 2

Test project

1/2 Test #1: MEMCIMD + v vttt ittt ettt eeeeeeeennns
2/2 TeST #2: MEMCPY t vt vttt ittt eeeeeeeeneenennn

100% tests passed, 0 tests failed out of 2

Start 1: memcmp
Start 2: memcpy

Total Test time (real)

34

© 2020 Arm Limited (or its affiliates)

/tf-a-unit-tests/build

2.02 sec

/tf-a-unit-tests/build

1.00 sec

Passed 1.
Passed 1.

.01

00

00
00

SecC

SecC

SecC
SecC

arm

Workflow

ctest — running individual tests (test suite names are unique)

[build]$./memcmp

OK (8 tests, 8 ran, 8 checks, 0 ignored,
[build]$./memcmp -v

TEST (memcmp, last diff negative) - 0 ms
TEST (memcmp, last diff positive) - 0 ms
TEST (memcmp, second diff negative) - 0 ms
TEST (memcmp, second diff positive) - 0 ms
TEST (memcmp, first diff negative) - 0 ms
TEST (memcmp, first diff positive) - 0 ms
TEST (memcmp, same) - 0 ms

TEST (memcmp, zero length) - 0 ms

OK (8 tests, 8 ran, 8 checks, 0 ignored,
[(build]s$s

35 © 2020 Arm Limited (or its affiliates)

0O filtered out,

0O filtered out,

0 ms)

0 ms)

arm

Workflow

ctest — error reporting from ctest

[build] S ctest
Test project /tf-a-unit-tests/build
Start 1: memcmp

1/1 Test #1: MEMCIMD « ittt vttt ettt et eeeeaeeanns ***Failed 0.00 sec
Start 2: memcpy

2/2 Test #2: MeMCPY vt ittt ittt eeeeneeneeaeeas Passed

0.00 sec 50% tests passed, 1 tests failed out of 2

Total Test time (real) = 0.01 sec

The followling tests FAILED:
1 - memcmp (Failed) Errors while running Ctest

[(build]$

36 © 2020 Arm Limited (or its affiliates) a r m

Workflow

ctest — error reporting from CppUTest

/tf-a-unit-tests/tests/lib/libc/test memcmp.cpp:27: error: Failure in TEST (memcmp,
zero length)

expected <1 0x1>

but was <0 0x0>

Errors (1 failures, 8 tests, 8 ran, 8 checks, 0 ignored, 0 filtered out, 0 ms)

e Combined solution
[build]$ ctest --output-on-failure

37 © 2020 Arm Limited (or its affiliates) a r m

Backup - Example

- Testing memcmp

Example - memcmp
Test Results

TEST(memcmp, last differs) - 0 ms
TEST(memcmp, middle differs) - 0 ms
TEST(memcmp, first differs) - © ms
TEST(memcmp, same) - © ms

OK (4 tests, 4 ran, 4 checks, © ignored, 0@ filtered out, 0 ms)

39 © 2020 Arm Limited (or its affiliates) a r m

Example - memcmp
Test results with error

* |magine if we made mistake: while (len--) —> while (--len)
* The function now ignores the last byte (and causes buffer overrun on len = 0)
* Test results

TEST(memcmp, last differs)
example2.cpp:35: error: Failure in TEST(memcmp, last different)
expected <1 ox1>
but was <0 0x0>
- @ ms
TEST(memcmp, middle different) - © ms
TEST(memcmp, first different) - 0 ms
TEST(memcmp, same) - © ms
Errors (1 failures, 4 tests, 4 ran, 4 checks, @ ignored, @ filtered out, © ms)

40 © 2020 Arm Limited (or its affiliates) a r m

