
© 2020 Arm Limited (or its affiliates)

Lauren Wehrmeister
6/18/2020

Trusted Firmware A

Unit Testing in TF-A

2 © 2020 Arm Limited (or its affiliates)

Agenda
• The Concept of Unit Testing
• Current Framework & Components
• Future Work

© 2020 Arm Limited (or its affiliates)

The Concept of Unit
Testing

4 © 2020 Arm Limited (or its affiliates)

Levels of Software Testing
• Unit testing

• Testing each unit separately

• Integration testing
• Checking multiple interacting units together

• System testing
• Testing the whole system against the specification

• Acceptance testing
• Checking business requirements for delivery

Code
involved
in testing

5 © 2020 Arm Limited (or its affiliates)

Unit Testing
• Testing of small, isolated software units

• Object-oriented unit - class
• C unit - set of functions around a feature

• C/C++ unit tests and the code under test are compiled into an executable
• Advantages

• Less errors caused by lower abstraction level functions on higher levels
• Validates the existing behavior in every run helps refactoring
• Makes the programmer able to test rare events
• Encourages modular software structure, because it’s hard to test spaghetti code
• Helps documenting as it works as an example code
• Another advantage in embedded environment is that is helps development without hardware

• Disadvantages
• It requires more work from the software developer (but it pays off later)
• It doesn’t test all the interactions between units so higher-level testing is still required

© 2020 Arm Limited (or its affiliates)

Current Framework &
Components

7 © 2020 Arm Limited (or its affiliates)

Current Framework
• The TF-A Unit Testing framework allows testing parts of C/C++ code.
• Currently only works internally to Arm as the c-picker tool is not available

outside Arm.

• At its current stage, the framework:
• Can define and build unit test cases, there are currently a few that exist
• Runs with lcov based code-coverage when compiled with GCC, which is the same as

used for FVP based TF-A code-coverage.
• Documentation exists for getting started, building, running and debugging tests
• Some basic mocks have been implemented for TF-A.
• c-picker tool created with can split code fragments from original code and map

coverage info back to original code location

8 © 2020 Arm Limited (or its affiliates)

Components
• CMake – Build environment
• CppUTest – Unit test framework

• Includes CppUMock – Mocking framework

• c-picker – Python based code-cut tool for isolating functions
• trusted-firmware-a – Code under test
• tf-a-unit-tests – Unit test repository

• Unit tests
• Mocks
• Build system and utilities

9 © 2020 Arm Limited (or its affiliates)

CMake
• CMake is a tool to describe and generate buildsystems chosen as the build

environment for the TF-A unit test framework
• We are currently integrating into TF-A -> Refer to Javier’s presentation on

CMake from past Tech Forum

• Motivation for Unit Test framework is that ctest is included
• ctest is an executable of CMake
• CMake-generated build trees created for projects that use the enable_testing()

and add_test() commands have testing support.
• ctest will run the tests and report results.

10 © 2020 Arm Limited (or its affiliates)

CppUTest
• CppUTest is a C/C++ based unit xUnit test framework

• Why CppUTest?
• C/C++ support
• Small footprint (compared to the popular Google Test)
• Easy portability for embedded systems
• Built-in mocking system (CppUMock)
• Implements xUnit four-phase testing pattern
• Selective run of test cases
• Standard output format

11 © 2020 Arm Limited (or its affiliates)

CppUTest Functionality
• TEST_GROUP

• Test suite
• C++ class
• Can contain additional variables and functions

• TEST_SETUP, TEST_TEARDOWN
• Test fixture
• Called before and after each test case

• TEST
• Test case
• Function of a class
• The class is inherited from the TEST_GROUP
• TEST_GROUP members are accessible
• Places global object
• It’s constructor registers the test case

• Assertions: CHECK_TRUE, LONGS_EQUAL, etc.

#include <CppUTest/TestHarness.h>
#include "list.h"

TEST_GROUP(List) {
TEST_SETUP() {

list = list_alloc();
}

TEST_TEARDOWN() {
list_cleanup(list);

}

bool has_element(int value) {
for (int i = 0; i < list_count(list); i++) {

if (list_get(i) == value) { return true; }
}
return false;

}

List* list;
};

TEST(List, add_one) {
const int test_value = 5;

list_add(list, test_value);
bool result = has_element();
CHECK_TRUE(result)

}

12 © 2020 Arm Limited (or its affiliates)

CppUTest Example - memcmp
Code

int memcmp(const void *s1, const void *s2,
size_t len) {

const unsigned char *s = s1;
const unsigned char *d = s2;
unsigned char sc;
unsigned char dc;

while (len--) {
sc = *s++;
dc = *d++;
if (sc - dc)

return (sc - dc);
}

return 0;
}

//Test Suite
TEST_GROUP(memcmp) { };

//Test Cases
TEST(memcmp, same) {

LONGS_EQUAL(0, memcmp("abc", "abc", 3))
}

TEST(memcmp, first_differs) {
LONGS_EQUAL(1, memcmp("bbc", "abc", 3))

}

TEST(memcmp, middle_differs) {
LONGS_EQUAL(2, memcmp("adc", "abc", 3))

}

TEST(memcmp, last_differs) {
LONGS_EQUAL(1, memcmp("abd", "abc", 3))

}

13 © 2020 Arm Limited (or its affiliates)

CppUTest Functionality
Test runner

#include <CppUTest/CommandLineTestRunner.h>

int main(int argc, char* argv[]) {
return RUN_ALL_TESTS(argc, argv);

}

• Runs all the collected test cases

14 © 2020 Arm Limited (or its affiliates)

CppUMock
• CppUMock is a mocking framework built

in to CppUTest
• Allows a replacement of objects by mocks

to simulate the behavior of real objects

• mock() returns the global MockSupport
• expectOneCall(functionName)/expectNCall
s(amount, functionName)

Records expectation from the test case
• actualCall(functionName)

Records actual call from the replaced
function

#include <CppUTest/TestHarness.h>

#include <CppUTestExt/MockSupport.h>

TEST_GROUP(MockDocumentation) {

void teardown() {

mock().clear();

}

};

void productionCode() {

mock().actualCall("productionCode");

}

TEST(MockDocumentation, SimpleScenario) {

mock().expectOneCall("productionCode");

productionCode();

mock().checkExpectations();

}

15 © 2020 Arm Limited (or its affiliates)

CppUMock Functionality
• Expected / actual calls can be extended by specifying:

• onObject(object) – Checks whether the call was done to the right object
• with[type]Parameter(name, value) – Allows specifying and checking of

the call parameters
• return[type]Value() – Specifying the return value from function

• Other functions
• enable() / disable() – Enable/Disable the mocking framework
• tracing(enabled) / getTraceOutput()
• checkExpectation() – Checking for non-fulfilled function calls
• clear() – Clearing expectations

16 © 2020 Arm Limited (or its affiliates)

C-picker
• Arm Python tool
• Allows unit-test flexibility and breaking dependency between C items

defined in the same file.
• These can not be separated otherwise, which limits mocking options.

17 © 2020 Arm Limited (or its affiliates)

trusted-firmware-a
• Code under test
• The unit test build system expects a local copy of it
• Specified by setting the TF_A_PATH variable
• The new build system of TF-A will fetch the unit test repository and test

itself

18 © 2020 Arm Limited (or its affiliates)

tf-a-unit-tests
• Unit Test Framework stored in an internal Arm repository
• CMake modules

• FetchContent
• UnitTest – Function for defining unit test suites

• Unit test source files
• CppUMock based mocks for common parts of the TF-A code

• Platform
• Log
• Panic

• Root CMakeLists.txt – Defines the workflow of the system
• Documentation

© 2020 Arm Limited (or its affiliates)

Future Work

20 © 2020 Arm Limited (or its affiliates)

Future Work
• Determine how Unit Testing will fit in Test Strategy

• Optional or mandatory?
• Potential use to fill coverage holes

• Determine if and how Unit Testing should be publicly released
• Unit Test Framework
• C-Picker Tool

• Split CMake files to framework and build definition. Merge framework part to CMake
framework. This depends on the CMake framework being released first.

• Platform-ci based automation of unit testing of TF-A
• Documentation:

• Find a way to document test cases.

• Add unit tests for existing and new features.

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

© 2020 Arm Limited (or its affiliates)

Backup Slides

© 2020 Arm Limited (or its affiliates)

Backup - The Concept of
Unit Testing

24 © 2020 Arm Limited (or its affiliates)

Unit testing
• xUnit – unit testing framework family, Kent Beck, Erich Gamma (Gang of Four)

• xUnit
– Has nothing to do with X Window System
– Smalltalk: SUnit, Java: JUnit à xUnit as a collective name

• Test runner – collects and runs tests cases
• Test case – testing block for a single case
• Test fixtures – each case has known context

– Test cases must not affect other test cases
• Test suites – common context for multiple cases
• Test execution steps

– Setup context
– Body of the test

§ Exercise code
§ Verifying result

– Teardown context
• Test result formatter – automated result processing
• Assertions – logical conditions

Four-
phase

pattern

© 2020 Arm Limited (or its affiliates)

Backup - Current
Framework &
Components

26 © 2020 Arm Limited (or its affiliates)

CMake
• Required to be installed on the build machine
• Currently supported range of version: 3.11 – 3.15

• Ubuntu 16.04 LTS: 3.5
• Ubuntu 18.04 LTS: 3.10
• Arch Linux: 3.15
• MSYS2: 3.15

• Workaround
• Download and install CMake manually
• Install using pip: 3.15

• ctest is included

27 © 2020 Arm Limited (or its affiliates)

CppUTest
• Fetched from official GitHub repository by the build system (CPPUTEST_URL)
• Latest release: v3.8 (CPPUTEST_REFSPEC)

• Why CppUTest?
• C/C++ support
• Small footprint (compared to the popular Google Test)
• Easy portability for embedded systems
• Built-in mocking system (CppUMock)
• Implements four-phase testing pattern
• Selective run of test cases
• Standard output format

https://github.com/cpputest/cpputest

28 © 2020 Arm Limited (or its affiliates)

C-picker
• Arm internal (currently) tool c-picker allows unit-test flexibility and allow breaking

dependency between C items defined in the same file. These can not be separated
otherwise, which limits mocking options.

• Python Based
• Requires python3 and pip installed on build machine
• Stored in an internal Arm repository
• Uses libclang Python interface for parsing the source

• clang dependency
• Not uniform across OS-es
• Currently the developer needs to handle this

29 © 2020 Arm Limited (or its affiliates)

Scripts for testing the whole build system
• Currently used for checking compatibility of the build system
• Docker containers of various systems
• Can be published if they seem useful somewhere like in the CI system

© 2020 Arm Limited (or its affiliates)

Backup - Workflow

31 © 2020 Arm Limited (or its affiliates)

Workflow
• CMake time

• Checking TF-A location
• Checking required tools

– c-picker
– git

• CppUTest
– Fetching specified version
– Building library
– Using library as a CMake package

• Collecting test suites from included cmake files
• Build time – Building test suites
• ctest time – Running test suites

32 © 2020 Arm Limited (or its affiliates)

Workflow
CMake time

[tf-a-unit-tests]$ mkdir build && cd build
[build]$ cmake -DTF_A_PATH=~/trusted-firmware-a -G"Unix Makefiles" ..

[...]
CMake output of fetching and building CppUTest

-- Configuring done
-- Generating done
-- Build files have been written to: tf-a-unit-tests/build

[build]$

33 © 2020 Arm Limited (or its affiliates)

Workflow
Build time

[build]$ make –j
Scanning dependencies of target memcpy
[30%] Building CXX object CMakeFiles/memcpy.dir/common/main.cpp.o
[40%] Building CXX object CMakeFiles/memcpy.dir/tests/lib/libc/test_memcpy.cpp.o
Scanning dependencies of target memcmp
[60%] Building CXX object CMakeFiles/memcmp.dir/common/main.cpp.o
[70%] Building CXX object CMakeFiles/memcmp.dir/tests/lib/libc/test_memcmp.cpp.o
[90%] Linking CXX executable memcpy
[100%] Linking CXX executable memcmp
[100%] Built target memcpy
[100%] Built target memcmp
[build]$

• Building single test à each test is a Makefile target
[build]$ make memcmp

34 © 2020 Arm Limited (or its affiliates)

Workflow
ctest

[build]$ ctest
Test project /tf-a-unit-tests/build

Start 1: memcmp
1/2 Test #1: memcmp Passed 1.01 sec

Start 2: memcpy
2/2 Test #2: memcpy Passed 1.00 sec
100% tests passed, 0 tests failed out of 2
Total Test time (real) = 2.02 sec
[build]$ ctest -j 2
Test project /tf-a-unit-tests/build

Start 1: memcmp
Start 2: memcpy

1/2 Test #1: memcmp Passed 1.00 sec
2/2 Test #2: memcpy Passed 1.00 sec
100% tests passed, 0 tests failed out of 2
Total Test time (real) = 1.00 sec

35 © 2020 Arm Limited (or its affiliates)

Workflow
ctest – running individual tests (test suite names are unique)

[build]$./memcmp
........
OK (8 tests, 8 ran, 8 checks, 0 ignored, 0 filtered out, 0 ms)
[build]$./memcmp –v
TEST(memcmp, last_diff_negative) - 0 ms
TEST(memcmp, last_diff_positive) - 0 ms
TEST(memcmp, second_diff_negative) - 0 ms
TEST(memcmp, second_diff_positive) - 0 ms
TEST(memcmp, first_diff_negative) - 0 ms
TEST(memcmp, first_diff_positive) - 0 ms
TEST(memcmp, same) - 0 ms
TEST(memcmp, zero_length) - 0 ms
OK (8 tests, 8 ran, 8 checks, 0 ignored, 0 filtered out, 0 ms)
[build]$

36 © 2020 Arm Limited (or its affiliates)

Workflow
ctest – error reporting from ctest

[build]$ ctest
Test project /tf-a-unit-tests/build

Start 1: memcmp
1/1 Test #1: memcmp***Failed 0.00 sec

Start 2: memcpy
2/2 Test #2: memcpy Passed
0.00 sec 50% tests passed, 1 tests failed out of 2
Total Test time (real) = 0.01 sec
The following tests FAILED:

1 - memcmp (Failed) Errors while running Ctest
[build]$

37 © 2020 Arm Limited (or its affiliates)

Workflow
ctest – error reporting from CppUTest

[build]$./memcmp
.......
/tf-a-unit-tests/tests/lib/libc/test_memcmp.cpp:27: error: Failure in TEST(memcmp,
zero_length)

expected <1 0x1>
but was <0 0x0>

.
Errors (1 failures, 8 tests, 8 ran, 8 checks, 0 ignored, 0 filtered out, 0 ms)

• Combined solution
[build]$ ctest --output-on-failure

© 2020 Arm Limited (or its affiliates)

Backup - Example

Testing memcmp

39 © 2020 Arm Limited (or its affiliates)

Example - memcmp
Test Results

TEST(memcmp, last_differs) - 0 ms
TEST(memcmp, middle_differs) - 0 ms
TEST(memcmp, first_differs) - 0 ms
TEST(memcmp, same) - 0 ms

OK (4 tests, 4 ran, 4 checks, 0 ignored, 0 filtered out, 0 ms)

40 © 2020 Arm Limited (or its affiliates)

Example - memcmp
Test results with error

• Imagine if we made mistake: while (len--) à while (--len)
• The function now ignores the last byte (and causes buffer overrun on len = 0)
• Test results

TEST(memcmp, last_differs)
example2.cpp:35: error: Failure in TEST(memcmp, last_different)

expected <1 0x1>
but was <0 0x0>

- 0 ms
TEST(memcmp, middle_different) - 0 ms
TEST(memcmp, first_different) - 0 ms
TEST(memcmp, same) - 0 ms
Errors (1 failures, 4 tests, 4 ran, 4 checks, 0 ignored, 0 filtered out, 0 ms)

