
Madhukar Pappireddy, Austin TX

May 2020

Firmware enhancements
through fconf

Brief introduction to fconf
• fconf is an abstraction layer for accessing platform specific data

• Requesting entity can query for a property without knowing what kind of backing store is used to hold the
property.

• Properties are typically stored in C structures and are filled once using platform specific populate() callbacks.

• Ex: The populate function populate_uart_config() can retrieve the properties of uart node from dts and fill
them in local C structures.

populate_uart_config()

Used in uart console driver by
invoking the accessor API.

Device tree node

fconf based C struct

Brief introduction to fconf continued ..
• Property accessed using the API: FCONF_GET_PROPERTY(namespace, sub-namespace, prop)

• Preprocessor macro: translates to a pseudo function access :- namespace_sub-namespace_getter(prop)

• namespace loosely refers to a collection of group of properties: Ex: “hw_config”: represents configuration of
various devices such as timer, uart, gic etc.

• sub-namespace loosely refer to group of related properties: Ex: “uart_serial_config” which holds properties
of UART std-out serial device.

populate_uart_config()

Used in uart console driver by
invoking the accessor API.

Device tree node

fconf based C struct

FCONF_GET_PROPERTY(hw_config, uart_serial_config, base_addr)

Brief introduction to fconf continued ..
• Each populate() function must be registered with the fconf framework

• Using FCONF_REGISTER_POPULATOR() macro.

• Ex: FCONF_REGISTER_POPULATOR(“HW_CONFIG”, uart_config, populate_uart_config)

• Tie populate() to config source (ex: dts)

• As part of platform setup, each BL invokes fconf_populate(config_type, config_dts)

Leveraging fconf to move to dynamic configurations

• As presented in previous fconf session, we aim to enhance firmware by leveraging fconf framework.

• One such idea is to make various statically configured pieces of TF-A into dynamically configured
components

• Example: IO Policies, Chain of Trust descriptors, hardware configuration of various devices such as UART, GIC
etc.

• Instead of relying on hard coded compile time structures or macros, we intend to extract the platform
specific configs using fconf and initialize various components in a BL image during runtime.

• Primary motivation :

• Reduce the source code fragmentation within family of SoCs due to various platform specific
definitions.

• Evaluate the feasibility of having common TF-A BL images across multiple compatible platforms.

Leveraging fconf to move to dynamic configurations
• As a start, we move the platform specific properties and/or configurations to dts.

• Each platform can then provide the necessary populate() function , specific to its platform port

• Accessor APIs can then be integrated into a common library/device driver source code.

• This abstraction can help the shared library/driver code to be robust and re-usable across multiple
platforms.

populate_uart_config()

Used in uart console driver by
invoking the accessor API.

Device tree node

FCONF_GET_PROPERTY(hw_config, uart_config, base_addr)

Making SDEI event description dynamic using fconf

• The platform specific SDEI event descriptors which specify properties of private and shared events such as event number,
type of interrupt, events flags have been moved to device tree for FVP platform.

Static description in header file
DTS node for SDEI

fconf_populate_sdei_dyn_config()

Properties accessed in arm SDEI
driver code using fconf APIs.

Populates SDEI C structures.

Leveraging fconf to move to dynamic configurations

• We have chosen the FVP platform to test the feasibility of this effort.

• The following components have been identified to be made dynamic for FVP platform:

• BL31 (runtime) UART configuration

• Platform topology description

• GICv3 configuration

• Timer configuration

• SDEI platform event descriptors

• Chain of Trust descriptors

• Platform IO policies

• These efforts are inline with the Total Compute vision of Arm to standardize software interfaces across
platforms built on Arm Architecture.

Further improvements to fconf and firmware

• Investigating if there any other components that can be configured dynamically.

• Need inputs from TF-A community.

• Apart from this, we are also working on improving other aspects of TF-A using fconf framework such as

• standardizing BL handoff arguments for accessing various firmware configuration files.

• Implementing SETTER API in fconf framework to write to the platform properties.

• Making fconf robust through necessary checks for mandatory and optional properties.

• Any major design decisions will be communicated through TF-A public mailing list and/or open forum
meetings.

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

Confidential Restricted © 2019 Arm Limited

