TF-M TeStS
_ Improvements

Cevin Peng
July 2020

L.

What Are the Improvements

Write in your subtitle here

* The tf-m-tests repo

e Test Framework

2 © 2020 Arm Limited (or its affiliates) a r m

The tf-m-tests repo

* A new tf-m-tests repo has been created under TF-M

3

Intended to move in all the TF-M test codes

© 2020 Arm Limited (or its affiliates)

Y TF-M
tf-m-tests.git
tf-m-tools.git
trusted-firmware-m.git

arm

Migration of the test codes

e Phasel

« Move the codes as is
« Only necessary changes to pass compilation

e Phase 2

- Refine the build system
« Refine the file structure

4 © 2020 Arm Limited (or its affiliates) a r m

Test Framework
Introducing Unity + CMock

* Unity: Opensource test framework for C
e CMock: framework of automated mock and stub generation for C
e https://github.com/ThrowTheSwitch

TF-M Test Framework

Note: Mocks are optional for test cases

5 © 2020 Arm Limited (or its affiliates) a r m

Test Framework

Why do we need a new one

* The current test framework
« Only has the limited automation for developing
« Only a few test assertions
« Does not support mock or stub
+ Not so friendly for test developers

6 © 2020 Arm Limited (or its affiliates)

arm

Test Framework
Changes after using Unity

* Simpler code for test case and more readability

tfm_attest_test 2001(test_result_t *ret)

err;

2

err = minimal test();
(err-1=-0)-{
TEST_LOG("minimal_test()
TEST_FAIL("Attest token minimal t

t() returned:

)
1
J

ret->val = TEST PASSED;

test _tfm_attest 2001()

TEST_ASSERT(minimal_test() == @, "Af
TEST_PASS();

© 2020 Arm Limited (or its affiliates) a r m

~N

Test Framework

Changes after using Unity

* Easy development

Developer focus
id test tfm_attest 2001()

TEST_ASSERT(minimal_ test() == 0, "A

TEST_PASS();

tfm_attest_test _main(
UnityBegin("attestation _ns i
run_test(test _tfm attest 2001, "
run_test(test_tfm_attest 2002, "
run_test(test_tfm_attest 2003,
run_test(test_tfm_attest 2004, "

run_test(test tfm _attest 2005, "te

UnityEnd();

© 2020 Arm Limited (or its affiliates)

Don’t have to write the following codes

t test_t attestation_interface_tests|[]

{&tfm_attest test 2e01, ES 3 Lol

"Minimal token test of ', {TEST_PASSED} },
{&tfm_attest_test_2@02, ' EST =

"Minimal token siz TEST_PASSED} },
{&tfm_attest test 2003,

"Short circuit sig : ", {TEST_PASSED} },

{&tfm_attest test 2004, "TFM ATTE I

"ECDSA signature test of : PASSED} })
{&tfm_attest_test_ 2005, I

i\ test cases for-initial wi S € ice", {TEST_PASSED} },

register_testsuite_ns_attestation_interface(test_suite_t *p_test_suite)
I
|8

t list size;

list_size = (si (attestation_interface_tests) /
(attestation_interface_tests[0]));

Test Framework
The CMock framework

* Mock framework lets you control the behaviors of the modules that your main test
object interacts with

Module A interface:
int moduleAFunc(int a, int b)

Mock APlIs:
Module B Mock API void moduleAFunc_ExpectAndReturn(int a, int b, int toReturn);
oue > > void moduleAFunc_ExpectAndThrow(int a, int b, EXCEPTION_T error);

________ : | ' .
Module A I Mocked void moduleAFunc_lgnoreAndReturn(int toReturn);
d Module A ' .
: void test_case_1(void)
{

inta=1,b=2,c;
moduleAFunc_ExpectAndReturn(1, 2, 3);
¢ = moduleAFunc(a, b); // cis 3

9 2020 Arm Limited (or its affiliates) TEST_ASSERT(C = 3), a r m

Test Framework
Why Unity

Pros

* It'spureC
* Automation scripts
* Mock feature

e Easyintegration — only 3 source files for
each(Unity & CMock)

Cons

e Extra build env ruby — the automation tools are
written in ruby

10 © 2020 Arm Limited (or its affiliates)

Comparison to other (a few popular ones)
frameworks
* Google Test — Aims for C++

* CppUTest — Written in C++, and test cases in C++
* Check - only supports a handful of assertions

* Cmocka - no scripts and requires the standard C
library

Unity users:
* a:fFr
* mbed-0S

arm

Unity + CMock

How are they managed

* MIT License — permissive license

* Import the source code as local copy
- Less than 10 files, include source codes and scripts
- Easy for customization
- Won’t upgrade frequently
- Won’t upstream

e Security — no considerations as test purpose only

11 © 2020 Arm Limited (or its affiliates) a r m

arm

© 2020 Arm Limited (or its affiliates)

- Thank You
Danke
Merci
i
HYMED
Gracias
Kiitos

AR L C

JHdla
) oSG
RIS
NTIN

© 2020 Arm Limited (or its affiliates)

"The Arm trademarks featured in this presentation are registéered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

