
TF-M Build System Update

TF-M Open Tech Forum
June 11, 2020

Raef Coles, Anton Komlev

Modern CMake overview

• Target oriented design
• Parameters encapsulation vs Global variables
• C / C++ analogy

• Public – private interfaces
• Automatic properties propagation

• Supported widely but not widely used

• Helpful materials
• https://www.youtube.com/watch?v=bsXLMQ6WgIk
• https://www.youtube.com/watch?v=y7ndUhdQuU8
• https://cliutils.gitlab.io/modern-cmake/
• https://pabloariasal.github.io/2018/02/19/its-time-to-do-cmake-right/

https://www.youtube.com/watch?v=bsXLMQ6WgIk
https://www.youtube.com/watch?v=y7ndUhdQuU8
https://cliutils.gitlab.io/modern-cmake/
https://pabloariasal.github.io/2018/02/19/its-time-to-do-cmake-right/

Targets

• Basic unit of modern cmake

• Can have separate compile definitions, include paths etc.

• Executable / (static | shared | interface) Library

• Requires at least one source file

• Behave a bit like C++ classes in terms of isolation / inheritance

Public - Private - Interface
• Control the scope of target properties

• Compile definitions / include paths / compiler options

• Public
• This target needs this, and all its dependents do as well

• Private
• This target needs this, but it's dependents don't

• Interface
• This target doesn't need this, but it's dependents do

• Propagates through dependency chains

• Private should be default

Secure_fw

INTERFACE

PRIVATE

PUBLIC

tfm_core

INTERFACE

PRIVATE

PUBLIC

Inheritance example

• Set CMSE flag on in only
platform_s

• Propagates to everything that
links to platform_s:
• All secure partitions

• SPM

• Does not get set for things in the
NS world or bootloader

• Single statement – all
propagation automatic

target_compile_options(platform_s

PUBLIC

${COMPILER_CMSE_FLAG}

)

Dependencies (on June 5)

*Regression tests excluded

Static library
External library
Interface
Executable binary
Public
Private

Important TF-M Targets

• Most targets built as static libraries

• Main targets:
• secure_fw – The secure side / actual TFM code
• bl2 – the level 2 bootloader
• app – The nonsecure (example) app

• Other targets
• TFM partitions
• TFM veneers
• PSA interface
• Platform (Secure | non-secure | bl2)
• External libraries

External libraries

• Automatically download the correct versions and build them

• Automatically patch if necessary

• Can be overridden by setting a cmake variable
• -DMBEDCRYPTO_PATH=…

HW Platform support

• Specified by user externally (similar as before but not the same)
• platform name -> platform/ext/target/${TFM_PLATFORM}/
• Every platform provides two files:

• CMakeLists.txt
• preload.cmake

• Cmakelists.txt
• Sets what files are built by the three targets platform_(s | ns | bl2)
• Sets startup and scatter files
• (Maybe) sets cmake setting flags

• Preload.cmake
• Sets CPU and architecture
• Sets details of any hardware accelerators

Compiler support / Toolchains

• Supported toolchains
• GCC, CLANG, [IAR]

• Compiler support entirely in one toolchain file
• Define variables and macros for things that are compiler specific

• ${COMPILER_CMSE_FLAG}

• Select compiler by selecting toolchain file
• -DCMAKE_TOOLCHAIN_FILE=../toolchain_ARMCLANG.cmake

• Currently compiler support is ~3 macros, 2 variables and default
compiler / linker flags

Startup sequence

Benefits

• Currently removes 4000 lines of cmake, replacing it with 2800 lines of
much maintainable code

• Removes most logic from platform cmake = easier platform porting

• Full incremental build support = much faster build times

• Should be able to plug TFM into existing cmake build systems
• Link to targets like psa_api in one cmake statement

Visible changes

• make install replaced by just make
• Will be disabled by time of release

• Armclang support requires cmake v15.0 +
• Earliest version that supports armclang

• Previously backported but that has been removed

• Not in repos for Ubuntu

• Takes ~5 mins to install from source

• Changes to cmake command-line parameters
• DIR -> PATH

Example: Musca S1 platform_s
set_target_properties(platform_s PROPERTIES

PLATFORM_SCATTER "${PLATFORM_DIR}/ext/common/armclang/tfm_common_s.sct"
PLATFORM_STARTUP "${CMAKE_CURRENT_SOURCE_DIR}/Device/Source/armclang/startup_cmsdk_musca_s.s"

)

target_include_directories(platform_s

PUBLIC

.

CMSIS_Driver

CMSIS_Driver/Config

Device/Config

Device/Include

Native_Driver

partition

services/include

)

target_sources(platform_s

PRIVATE

CMSIS_Driver/Driver_Flash_MRAM.c

CMSIS_Driver/Driver_MPC.c

CMSIS_Driver/Driver_PPC.c

CMSIS_Driver/Driver_USART.c

Device/Source/device_definition.c

Device/Source/system_core_init.c

Native_Driver/mpc_sie200_drv.c

Native_Driver/mpu_armv8m_drv.c

Native_Driver/ppc_sse200_drv.c

spm_hal.c

target_cfg.c

$<$<BOOL:BUILD_NATIVE_DRIVERS>:${CMAKE_CURRENT_SOURCE_DIR}/Native_Driver/ppc_sse200_drv.c>

$<$<BOOL:BUILD_NATIVE_DRIVERS>:${CMAKE_CURRENT_SOURCE_DIR}/Native_Driver/uart_pl011_drv.c>

$<$<BOOL:BUILD_PLAT_TEST>:${CMAKE_CURRENT_SOURCE_DIR}/plat_test.c>

$<$<BOOL:BUILD_TIME>:${CMAKE_CURRENT_SOURCE_DIR}/Native_Driver/timer_cmsdk_drv.c>

$<$<BOOL:TFM_PARTITION_PLATFORM>:${CMAKE_CURRENT_SOURCE_DIR}/services/src/tfm_platform_system.c>

)

TODO

• Move Non-Secure app into different repo

• Port and minimise all configuration options

• IAR compiler support

• Port tests

• Port remaining platforms

The End
Thank you

