Ison

Gary Morri

1
é

oy

, Arm Inc.
2020/02/20

+

+

© 2020 Arm Limited

1A



TF-M Fuzzing Tool

For PSA-level Directed-Random Testing — Motivation and Historical Background

* There have been reports that one of the PSA-certification labs wants to develop
their own in-house proprietary PSA-API fuzzing tool. Ideally, we’d prefer there be
an open-sourced such tool to benefit the TF.org community.

* Gary Morrison (Arm Austin) has been working on such a tool, and would be
delighted to get it into the open-source world:

- Itis still in its early stages: so far, just one guy working on it for 3ish months total.

- Not strictly TF-M-only tool: Conceptually, switching a single file of “boilerplate” code
snippets would be all that’s needed to retarget it to TF-A SPCI testing.

2 © 2020 Arm Limited



TF-M Fuzzer, Originally

e The original intention was to provide a program running on a TF-M target
system that generates TF-M calls based upon a script.

* Its main goals:
To make it easy to write lots of tests quickly.

Fuzzing at the PSA level, with varying levels of pre-determinism vs.
randomness.

Being able to check for security breaches, and to accumulate a security-
regression suite for TF-M.

* There are complications to running a “test interpreter” on a TF-M target.

3 © 2020 Arm Limited



TF-M Fuzzer, Now

Workstation Code-Generator Advantages:

Workstation-generated tests require only a
very small footprint on the target.

A test generator, generating “tests like any
other,” leverages existing infrastructure
better. An on-target test interpreter would
involve “special” scripts — an all-new testing
framework.

It’s likely easier to make a code generator
that can target PSA calls for both TF-M and
TF-A than to maintain a “test interpreter” in
two very-different frameworks.

© 2020 Arm Limited

Target-Based Test-Interpreter Advantages:

At least conceptually, interpreted tests could
be downloaded as data, whereas generated-
executables (typically at least) require lots of
time in flash-image download.

Some expected-result information is hard to
predict “at compile time,” a target-resident
agent could even predict correct results when
multiple threads vie for common resources.

There’s no single standard interface for
FLASH-programming, which could complicate
the automation.



In the Long Run, Co-operative Test Management

There are many ways tests could be managed co-operatively, host and target

* On target systems with fair-sized memory, its probably possible to run the TF-M Fuzzer on the
target itself, directly performing the calls rather than generating source code. This would
generate and run tests lots of tests very rapidly.

* |t’s probably easy enough to provide a “plug-in” mechanism, whereby
specialized code can be run in coordination with the general PSA-level ~
exercising. This could be useful, for example, if the Partner adds
extensions atop basic PSA itself.

* A RAM- and/or serial-line-based downloader could be developed to quickly download test
templates, or whole generated tests.

e Atarget-based agent, with a small memory and compute footprint, could re-randomize data
and potentially other aspects of a test case compiled on the workstation, rerunning each time.

5 © 2020 Arm Limited



+ +




Test-Templating Language

* A test template describes the general schema of a test, with varied
determinism vs. randomness.

- Completely-random stimulus is usually not useful; it usually just causes a lot of
errors.

- Yes, testing error handling — sometimes called “negative testing” —is valuable too.

- However, since most code making it to the fuzzing stage doesn’t typically do a /ot of
stupid things, a medium-to-high proportion of the testing needs to operate within
the envelope of correct activity.

* |t's usually most interesting to comparatively-deterministically setup a test-
environment of interest, and then comparatively randomly “play around”
within that environment.

7 © 2020 Arm Limited



High-Level Abstraction vs. General-Purpose Language

* It’s conceptually possible to put Java or Python (etc.) onto a target.

* The advantage is that you can do everything you’d ever want, which is

clearly a very powerful capability. There are disadvantages though:

A general-purpose, high-level language interpreter could take a lot of space on very-
small TF-M targets. Nevertheless, some “embedded-friendly” interpreters (e.g.,
Micropython) do exist.

More importantly though: Although you can do everything you want with a general-
purpose language, you also must do everything you want.

* A simplified abstraction also makes it quick and easy to write lots of tests!

8

© 2020 Arm Limited



The Downside of Providing a General-Purpose-Language
Interpreter:

Instructions:

1. Remove
wood bloc
from box.

2. Carve away
everything
that doesn’t

look like a

ship.

9 © 2020 Arm Limited



How High-Level vs. Low-Level a Language? (ctd.)

* For TF-M target systems with enough resources to support it, adding
general high-level language support would be valuable.

 However, let’s first make it really easy to generate a whole lot of tests that
involve the most important PSA assets and APl actions.

* We can then extend that with customized plug-ins.
* Then, we can add full-blown general-purpose language support.

* The following slide briefly summarizes the initial test-templating language
the tool currently supports. The demo, shortly, illustrates it, live.

10 © 2020 Arm Limited



Partial, Quasi-Syntax Chart for Test Templates

Operation Asset Type Asset Sel. Paraineter
. N
l " data literal
(set op. only)
~ . ~N
name literal data
heck literal
set Sst name * (r%ad c%.?my) |
uid number check var (optional)
remove key (sSTonly) rint expect literal
read pOllcy Ul Eeadop.only)
name *active . hash y
(remove op. onll)
\n ame ~remnove d) For keys and key
policies, other stuff
| haven’t thought

through yet. Ideas?

secure hash assets >;
neq assets

11 © 2020 Arm Limited




Fuzzing Also Requires Modeling

12

We also have to remember that, for fuzzing, once you’ve automated
generating random activity, you’ve still only done half of the job.

The other half of the job is modeling to generate expected results!

This modeling is extremely hard to do in the most general case, especially if
you include multiple interacting asynchronous threads.

We can’t realistically try to solve this whole problem right from the start.
We should start with a smaller set of use cases and work our way out.

© 2020 Arm Limited






Demo Overview:

 What you’ll see here is just a start, and its “vocabulary” of PSA calls is, for now, small,
but we have an easily-extensible framework.

* Some code exists for testing Crypto, but not much yet. Mostly SST so far.

77

* One of the goals is just to make writing tests quicker. So, I'll start out with “party tricks”:
Not amazing capabilities, but just generating a lot of testing from very short templates.

* I'll then point out how TF-M Fuzzer can infer test outcomes for you.

* Then I'll show TF-M Fuzzer generating randomized data and asset names.
* Then operating upon multiple assets in a single template line.

* Then I'll demo some test control-flow randomization provisions.

* If you’re inside Arm, please look over this confluence site.

14 © 2020 Arm Limited


https://confluence.arm.com/display/BSGSoftware/TPSATG%3A++Templated+PSA+Test+Generator







Classes and Tracker Objects

* TF-M Fuzzer uses three main class trees, implementing “tracker objects”:

- Template-file lines:
— As we parse lines in the template file, they get decoded into these objects.
- One template-line object per line in the template, although not necessarily only one “alive” at a
time.
— These are new () ed once enough is parsed from a template-file line to know which kind to allocate.
—~ They are delete () ed when no more code needs to be generated from that template line.

- PSA assets:

— These track the state of known PSA assets (SST files, Crypto keys, Crypto key policies, etc.)

— Asset trackers never go away once allocated. If an asset is removed, its tracker is moved onto an
STL vector of removed objects.

- Three vectors of each asset type are maintained: Active (present on the system), Inactive
(existed but subsequently removed, and Invalid (actually, I’'m not yet sure what to do with the
Invalid list yet!).

— These three vectors exist for each basic type of asset, so far (again, SST files, Crypto keys, key
policies, etc.)

17 © 2020 Arm Limited



Classes and Tracker Objects (ctd.)

* TF-M Fuzzer uses three main class trees, implementing “tracker objects”:

- PSA calls generated:
- As it parses the template, it creates a sequential vector of PSA calls to be written out.
— These call tracker objects include information to create variables used by the calls, as well as the
calls and their checking code.

* There’s a lot of overlap in types of information in each of these object

types store, but...
- Their lifespans are very different (template-line trackers come and go with parsing,
whereas asset trackers and call trackers stay throughout the test.

- Although the information types are similar, specific information in each can differ!
— Information in the PSA-asset trackers is continually updated to reflect the state of that asset
throughout the test.
— Information in the PSA-call trackers includes a snapshot of relevant information about an asset at
the time of that call.

18 © 2020 Arm Limited



make sst tem

Template-Line olate line
Class Hierarchy:

remove sst te

sst template mplate_line

line
read sst temp
late line
make key temp
late line

key template remove key te (etc.)

template line :
» line mplate line

read key temp
late line

make policy t
emplate line

policy templa
te line

read policy t
emplate line

19 © 2020 Arm Limited



- Thank You
Danke
Merci
i
HdYMED
Gracias
Kiitos
LA L T
ﬂ=Qd&i
I8

S BIBIN]
NTIN

© 2020 Arm Limited



