
© 2020 Arm Limited

Gary Morrison, Arm Inc.
2020/02/20

TF-M Fuzzer Tool
Proposal

2 © 2020 Arm Limited

TF-M Fuzzing Tool
For PSA-level Directed-Random Testing – Motivation and Historical Background

• There have been reports that one of the PSA-certification labs wants to develop
their own in-house proprietary PSA-API fuzzing tool. Ideally, we’d prefer there be
an open-sourced such tool to benefit the TF.org community.

• Gary Morrison (Arm Austin) has been working on such a tool, and would be
delighted to get it into the open-source world:

• It is still in its early stages: so far, just one guy working on it for 3ish months total.

• Not strictly TF-M-only tool: Conceptually, switching a single file of “boilerplate” code
snippets would be all that’s needed to retarget it to TF-A SPCI testing.

3 © 2020 Arm Limited

TF-M Fuzzer, Originally

• The original intention was to provide a program running on a TF-M target
system that generates TF-M calls based upon a script.

• Its main goals:

• To make it easy to write lots of tests quickly.

• Fuzzing at the PSA level, with varying levels of pre-determinism vs.
randomness.

• Being able to check for security breaches, and to accumulate a security-
regression suite for TF-M.

• There are complications to running a “test interpreter” on a TF-M target.

4 © 2020 Arm Limited

TF-M Fuzzer, Now

Workstation Code-Generator Advantages:

• Workstation-generated tests require only a
very small footprint on the target.

• A test generator, generating “tests like any
other,” leverages existing infrastructure
better. An on-target test interpreter would
involve “special” scripts – an all-new testing
framework.

• It’s likely easier to make a code generator
that can target PSA calls for both TF-M and
TF-A than to maintain a “test interpreter” in
two very-different frameworks.

Target-Based Test-Interpreter Advantages:

• At least conceptually, interpreted tests could
be downloaded as data, whereas generated-
executables (typically at least) require lots of
time in flash-image download.

• Some expected-result information is hard to
predict “at compile time,” a target-resident
agent could even predict correct results when
multiple threads vie for common resources.

• There’s no single standard interface for
FLASH-programming, which could complicate
the automation.

5 © 2020 Arm Limited

In the Long Run, Co-operative Test Management
There are many ways tests could be managed co-operatively, host and target

• On target systems with fair-sized memory, its probably possible to run the TF-M Fuzzer on the
target itself, directly performing the calls rather than generating source code. This would
generate and run tests lots of tests very rapidly.

• It’s probably easy enough to provide a “plug-in” mechanism, whereby
specialized code can be run in coordination with the general PSA-level
exercising. This could be useful, for example, if the Partner adds
extensions atop basic PSA itself.

• A RAM- and/or serial-line-based downloader could be developed to quickly download test
templates, or whole generated tests.

• A target-based agent, with a small memory and compute footprint, could re-randomize data
and potentially other aspects of a test case compiled on the workstation, rerunning each time.

© 2020 Arm Limited

TF-M Fuzzing Test-
Template Language

7 © 2020 Arm Limited

Test-Templating Language

• A test template describes the general schema of a test, with varied
determinism vs. randomness.

• Completely-random stimulus is usually not useful; it usually just causes a lot of
errors.

• Yes, testing error handling – sometimes called “negative testing” – is valuable too.

• However, since most code making it to the fuzzing stage doesn’t typically do a lot of
stupid things, a medium-to-high proportion of the testing needs to operate within
the envelope of correct activity.

• It’s usually most interesting to comparatively-deterministically setup a test-
environment of interest, and then comparatively randomly “play around”
within that environment.

8 © 2020 Arm Limited

High-Level Abstraction vs. General-Purpose Language

• It’s conceptually possible to put Java or Python (etc.) onto a target.

• The advantage is that you can do everything you’d ever want, which is
clearly a very powerful capability. There are disadvantages though:

• A general-purpose, high-level language interpreter could take a lot of space on very-
small TF-M targets. Nevertheless, some “embedded-friendly” interpreters (e.g.,
Micropython) do exist.

• More importantly though: Although you can do everything you want with a general-
purpose language, you also must do everything you want.

• A simplified abstraction also makes it quick and easy to write lots of tests!

9 © 2020 Arm Limited

The Downside of Providing a General-Purpose-Language
Interpreter:

10 © 2020 Arm Limited

How High-Level vs. Low-Level a Language? (ctd.)

• For TF-M target systems with enough resources to support it, adding
general high-level language support would be valuable.

• However, let’s first make it really easy to generate a whole lot of tests that
involve the most important PSA assets and API actions.

• We can then extend that with customized plug-ins.

• Then, we can add full-blown general-purpose language support.

• The following slide briefly summarizes the initial test-templating language
the tool currently supports. The demo, shortly, illustrates it, live.

11 © 2020 Arm Limited

set

remove

read

sst

key

policy

name literal
name *

uid number
uid *

name *active

name *removed

data literal
data *

check literal
check var
print

hash

For keys and key
policies, other stuff
I haven’t thought
through yet. Ideas?

expect literal

;secure
hash assets
neq assets

(optional)

(SST only)

(remove op. only)

(set op. only)

(read op. only)

(read op. only)

Operation Asset Type Asset Sel. Parameter

Partial, Quasi-Syntax Chart for Test Templates

12 © 2020 Arm Limited

Fuzzing Also Requires Modeling

• We also have to remember that, for fuzzing, once you’ve automated
generating random activity, you’ve still only done half of the job.

• The other half of the job is modeling to generate expected results!

• This modeling is extremely hard to do in the most general case, especially if
you include multiple interacting asynchronous threads.

• We can’t realistically try to solve this whole problem right from the start.
We should start with a smaller set of use cases and work our way out.

© 2020 Arm Limited

Demo

14 © 2020 Arm Limited

Demo Overview:
• What you’ll see here is just a start, and its “vocabulary” of PSA calls is, for now, small,

but we have an easily-extensible framework.

• Some code exists for testing Crypto, but not much yet. Mostly SST so far.

• One of the goals is just to make writing tests quicker. So, I’ll start out with “party tricks”:
Not amazing capabilities, but just generating a lot of testing from very short templates.

• I’ll then point out how TF-M Fuzzer can infer test outcomes for you.

• Then I’ll show TF-M Fuzzer generating randomized data and asset names.

• Then operating upon multiple assets in a single template line.

• Then I’ll demo some test control-flow randomization provisions.

• If you’re inside Arm, please look over this confluence site.

https://confluence.arm.com/display/BSGSoftware/TPSATG%3A++Templated+PSA+Test+Generator

© 2020 Arm Limited

Yeah yeah yeah, get on
with the demo!

© 2020 Arm Limited

Internals

17 © 2020 Arm Limited

Classes and Tracker Objects

• TF-M Fuzzer uses three main class trees, implementing “tracker objects”:
• Template-file lines:

– As we parse lines in the template file, they get decoded into these objects.
– One template-line object per line in the template, although not necessarily only one “alive” at a

time.
– These are new()ed once enough is parsed from a template-file line to know which kind to allocate.
– They are delete()ed when no more code needs to be generated from that template line.

• PSA assets:
– These track the state of known PSA assets (SST files, Crypto keys, Crypto key policies, etc.)
– Asset trackers never go away once allocated. If an asset is removed, its tracker is moved onto an

STL vector of removed objects.
– Three vectors of each asset type are maintained: Active (present on the system), Inactive

(existed but subsequently removed, and Invalid (actually, I’m not yet sure what to do with the
Invalid list yet!).

– These three vectors exist for each basic type of asset, so far (again, SST files, Crypto keys, key
policies, etc.)

18 © 2020 Arm Limited

Classes and Tracker Objects (ctd.)

• TF-M Fuzzer uses three main class trees, implementing “tracker objects”:
• PSA calls generated:

– As it parses the template, it creates a sequential vector of PSA calls to be written out.
– These call tracker objects include information to create variables used by the calls, as well as the

calls and their checking code.

• There’s a lot of overlap in types of information in each of these object
types store, but…
• Their lifespans are very different (template-line trackers come and go with parsing,

whereas asset trackers and call trackers stay throughout the test.
• Although the information types are similar, specific information in each can differ!

– Information in the PSA-asset trackers is continually updated to reflect the state of that asset
throughout the test.

– Information in the PSA-call trackers includes a snapshot of relevant information about an asset at
the time of that call.

19 © 2020 Arm Limited

Template-Line
Class Hierarchy:

template_line

sst_template_

line

key_template_

line

policy_templa

te_line

make__sst_tem

plate_line

remove_sst_te

mplate_line

read_sst_temp

late_line

make_key_temp

late_line

remove_key_te

mplate_line

read_key_temp

late_line

(etc.)

make_policy_t

emplate_line

read_policy_t

emplate_line

© 2020 Arm Limited

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

