Raef Coles
2021-07-05

© 2021 Arm



TF-M platform layer doesn't support real-world usecases well

* Large amounts of hardcoded crypto keys / attestation values

* Dummy implementation of a lot of key functionality require reimplementing

- Some platforms have done this, notably for the NV counters which has an almost-working
implementation

* Key derivation function returns hardcoded keys

* We don't currently offer any support / guidance on how to implement this as a platform

- Therefore, no platforms (at least in upstream code) provide a production-ready implementation

- Our best idea currently is to load keys / attestation values from ITS
— But we don't have any way to provision ITS, or to create ITS filesystems that can be flashed to devices

2 © 2021 Arm a rm



CryptoCell provisioning has some problems

* Platforms with a CryptoCell-312 accelerator do support provisioning

* There are some issues with the current system however

- They are provisioned with random IAKs, which causes problems with testing

- It only provisions the IAK, HUK, and BL2 ROTPKs
— And only supports 2 BL2 images, which causes issues with certain platforms (notably diphda)

- The provisioning system isn't easily extensible to add new data
- The platforms are still using dummy implementations of the NV counters etc

3 © 2021 Arm a rm



Proposed solution: add OTP HAL

 Add HAL to allow the platform layer to retrieve data that has been stored in OTP
* Use OTP to storeall data that needs to vary on a per-device basis

* Add a mechanism to provision this data on first boot
- This would then be common across all TF-M platforms, as it uses the OTP HAL to be generic
- This would be tied to lifecycle-state, which would then also have a real implementation

* By default, use secure on-chip flash instead of real OTP on platforms that lack it
- This is acceptable to be used in production, provided the flash is locked to secure-privileged access
only. Real OTP is still recomended if available however.
- This makes the OTP HAL compatible with all platforms that support ITS.
- We can use a tweak in the driver to make this semantically compatible with real OTP (where it's not
possible to change a 1 bit to a 0 bit).

4 © 2021 Arm a r’m



Incidental related upgrades

* Since the OTP HAL allows platforms to store secrets in a production-ready way, there is

only a small amount non-production-ready code left in the platform layer. Therefore, it
makes sense to also:

- Upgrade the NV counters implementation to one that can handle asynchronous power loss, which
makes it acceptable for production

: o-previe e 2t this change went into 1.4,
we just need to load the initial seed value from OTP instead of hardcoding it

- Change the key-derivation operation to perform actual key-derivation instead of returning a
hardcoded key

* This leaves us with a platform layer that is by default able to be used in production
- Provided the platform has internal flash

5 © 2021 Arm

arm



Design decisions

* APl design

* NV counters

* Internal flash allocation
* Provisioning

6 © 2021 Arm

arm



APl design

* APl needsto be generic to support different OTP implementations

* We can't make any assumptions on data layout

- Some implementations may store certain fields in hardware (e.g. CC312 with LCS)
- Some might have non-contiguous OTP address spaces

* Proposal: Generic getter / setter API
- Use IDs to indicate which OTP data element to get/set

* Design decision: Don't define how large OTP data elements are
- Provide an API to get the size of the data element from a given implementation
- Pro: More flexible — CC312 has limited space so can use more limited NV counters
- Con: Makes the APl harder to use, particularly with regard to memory allocation
- Alternative: Define sizes in the API

7 © 2021 Arm

arm



API design (cont.)

enum tfm otp element_id t {

PLAT_OTP_ID_HUK = 0,
PLAT_OTP_ID_IAK,
PLAT_OTP_ID_IAK LEN,
PLAT_OTP_ID_IAK TYPE,

PLAT OTP_ID_ IAK ID,

PLAT_OTP_ID_BOOT_SEED,
PLAT_OTP_ID_LCS,

PLAT_OTP_ID IMPLEMENTATION_ID,
PLAT_OTP_ID_ HW_VERSION,

PLAT OTP_ID VERIFICATION_ SERVICE URL,

PLAT_OTP_ID_ PROFILE_DEFINITION,

PLAT OTP_ID_ ENTROPY_SEED,

© 2021 Arm

enum

enum

enum

enum

tfm plat err t tfm plat otp_ init(void);

tfm _plat _err t tfm plat_otp_read(enum tfm otp_element_ id_t id,

size_t out_len, uint8_t *out);

tfm plat err t tfm plat otp write(enum tfm otp element_ id_t id,

size_t in_len,

const uint8_t *in);

tfm plat err t tfm plat otp get size(enum tfm otp element_ id t id,

size_t *size);

arm



NV counters

Ideally, we'd use the OTP api for all NV counters

- However, due to OTP semantics only unary NV counters can be stored in OTP
- 0x3 isencoded as 0b111, not as 0b011, since we can't unset bits

- Because of Unary representation OTP NV counters are limited on size
— 4 bytes gets a counter that goes up to 32

e OTP NV counters are suitable for BL2 images
- Since they need to count to ~512

 OTP NV counters are not suitable for PS
- Since we need to be able to do arbitrary amounts of writes, which would require too much OTP space

* Proposal: Use the current NV counter implementation for PS and use the OTP api for
BL2

- Con: We need two distinct code-paths
- Pro: BL2 counters are more secure (when the platform has real OTP)
- Alternative: Use the current NV counter implementation for both

9 © 2021 Arm 0 rm



Internal flash allocation

* Many platforms have very limited internal flash

* Internal flash backing for OTP HAL requires at least two sectors
« (not needed if the platform has real OTP)
- To allow for a backup sector to counter asynchronous power loss during writes

* Proposal: Share space with the NV counters

- Pro: These also require a backup sector
 Pro: Can share implementation for restoring from backup

10 © 2021 Arm a rm



Provisioning

Provisioning Data input Generic OTP HAL calls Underlying
OTP

provisioning
service

data

* Provisioning datais input to the device
- Currently using a debugger, or combining a binary into the image to flash
- This needs consultation to align best with what market require

* The provisioning service interprets a predefined datastructure, containing all the
required assets

* The provisioning service calls the OTP HAL to insert the data into either real OTP or OTP
emulated in embedded flash.

11 © 2021 Arm a rm



Provisioning (cont.)

* Provisioning is done in two stages, corresponding to the two provisioning lifecycle states

- Currently HUK provisioning is done in the first stage, all other in the second stage
— This may be changed based on feedback

- Provisioning writes to the LCS OTP ID to perform a state change
— How this is handled may depend on the hardware (Notably CC312)

* Provisioning is done via the OTP HAL
- This means it is the same on all platforms

* By default, a dummy provisioning bundle will be loaded which contains the current
dummy TF-M keys / data

 Where possible, provisioning will continue to run TF-M afterwards

- Not on CC312, as it requires reboots between lifecycle states
- This allows a first-run experience that is the same as the current state

12 © 2021 Arm 0 rm



Provisioning (cont.)

* Design decision: How to inject the keys/provisioning data
- Currently there is an empty struct, the provisioner can fill the struct with keys via a debugger
— The struct containsa magic value that must be set in order for it to be used for provisioning
Possibility: A HAL function to fill the struct
— Allows platforms to have flexibility
Possibility: Provide default implementation of a serial-port protocol
— Read data from the UART?
It's unclear how well these fit into actual provisioning flows

Feedback would be welcomed
— Does this flow fit with intermediate environments (IDEs etc)?
— Does this flow fit with factory provisioning flows?

13 © 2021 Arm a rm



Dummy keys

* Dummy keys are still used during development
* Thereis now a runtime warning if dummy keys are provisioned to the device

* Thereis also a runtime warning if the keys on the device are dummy ones
- In case the code is reflashed to disable dummy provisioning, but the OTP isn't / can't be reset
- This is done by comparing with the first 32 bytes of the dummy HUK

14 © 2021 Arm a rm



Future improvements

* Support for encrypted provisioning data
- Unclear which keys would be used for provisioning

e Support for temporary provisioning LCSes with secure debug disabled
- To prevent leaking decrypted keys

* On-device key generation where entropy is available

15 © 2021 Arm a rm



Any Questions?

e Patches at https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/10595/2
- Subject to changes from feedback

16 2021 Arm a rm


https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/10595/2

arm

2021 Arm

Thank You
Danke
Gracias
!
HpYMED
Asante
Merci

ZArEtL}

Tddlc
~ Kiitos
B
SR
NTIN



