
Ken Liu

Trusted Firmware – M
Interrupt Handling

2 © 2019 Arm Limited

• Secure Interrupt Handling in library model

• Secure Interrupt Handling in IPC model

• Interactions

• IDLE processing

This topic is the prologue of incoming designs. Interrupt has to be related with scheduling.

Content

3 © 2019 Arm Limited

Secure Interrupt Handling in library model

ISR

SP

SVC

SVC

SP ISR

Time Line & Priority Level

256

0

X < 255

S-ISR SVC to
Create

SP ISR ctx

To
SPISR

EOI TO
S-ISR

To SP

Priority = X

SECURE HANDLER

SECURE THREAD

4 © 2019 Arm Limited

Secure Interrupt Handling in IPC model

ISR

Tail-Chain

SP

SCHEDULER

Time Line & Priority Level

256

255

< 255

EXCEPTION_RETURN

S_ISR()

{

set_irq_signal(&THIS_IRQ->owner_sp, THIS_IRQ->signal);

}

NOTE:
1. In further discussion the SCHEDULER in PendSV is not listed individually.
2. Assume the non-secure scheduler ISR/SCHEDULER is running under Handler mode.

5 © 2019 Arm Limited

Interactions – Preempts Non-secure Handler Execution

NS Thread #1

NS Thread #2

RTOS Kernel

ISR

SP

MSP_NS Usage

1. Secure Handler is not preemptable to avoid secure execution stalling.
2. Preempt a non-secure Handler and do scheduling may cause NS stalls.
3. MSP_NS keeps increasing due to un-released execution.

SECURE HANDLER
SECURE THREAD
NON-SECURE HANDLER
NON-SECURE THREAD

6 © 2019 Arm Limited

Interactions – Preempts S/NS Thread Execution

NS Thread #1

NS Thread #2

RTOS Kernel

ISR

SP

NS Context Container Usage

SP

PSP_S Content

NS Preemption Content NS Preemption Content with different signature

1. May lack of NS context containers
– need to allocate one context
container if SPE don’t know which
non-secure thread is running.

2. Potential different NS preemption
context MAY cause Faults.

7 © 2019 Arm Limited

Interactions – Scenarios while Secure IDLE is ongoing

NS Thread #1

NS Thread #2

RTOS Kernel

CORE/ISR

SP

IDLE

psa_wait [2]

[1]

Scenario A

SG SVC Sched Wait
Interrupt

To
IDLE

S-IRQ NS-IRQ Sched S-IRQ

1. RTOS Kernel preempts the IDLE thread and regard the context as NS Thread #2
2. SPM preempts NS Thread #2 and regard the context as IDLE veneer
3. Scenario C described in the ‘Interactions’ page, do not schedule in SPE.

[3]

Scenario C

S-IRQNS-IRQ

Scenario BPrologue: A Secure Call is happening

8 © 2019 Arm Limited

Interactions – Initial Scheduling Guidelines

Do not do scheduling while NSPE is executing.

set_irq_signal(…)

{

if ((EXC_RETURN & SECURE_BIT) == SECURE_BIT) {

PendSV = 1;

}

}

9 © 2019 Arm Limited

IDLE

IDLE Processing – Option 1: `wfi` in SPE

RTOS Kernel

SPM/ISR psa_wait

SP

Veneer

wfi

NS Thread #1

svc

schedule

RTOS Kernel

SPM/ISR psa_wait

SP

Veneer wfi

NS Thread #1

svc

schedule

If there is IDLE thread(s)…

Re-use veneer context as IDLE Thread to save context

Pros:
No extra modification in
NS RTOS sources.

Cons:
Execution needs to be
activated by interrupt.

10 © 2019 Arm Limited

NS Thread #2

IDLE Processing – Option 2: Return IDLE to Non-secure

RTOS Kernel

SPM /ISR

Veneer

NS Thread #1 SGyield

do {
ret = psa_api();
if (ret != S_IDLE) {

break;
}
yield();

}

Secure Interrupt Handling

psa_wait

Pros:
Non-secure manages
secure IDLE.

Cons:
Extra design get involved
in non-secure code.

11 © 2019 Arm Limited

NS Thread #2

IDLE Processing – Option3: Use IRQ/Event

RTOS Kernel

SPM/ISR schedule

SP

NS Thread #1

If NS IRQ get triggered at SP…

TO IDLE

wfi

Here preempts directly
from SP since priority is
the lowest. This indicates
the secure execution is
IDLE, non-secure can go
IDLE if it also has nothing
to do.

SPM can’t do anything
since execution belongs
to non-secure now.

Have to wait non-secure
scheduler back to
preempted SP.

Pros:
Non-secure thread
software did not aware of
the code change (change
in kernel part).

Cons:
Extra design get involved
in non-secure scheduler
mode.

12 © 2019 Arm Limited

NS Thread #2

IDLE Processing – Option3: Use IRQ/Event

RTOS Kernel

SPM/ISR To IDLE

SP

NS Thread #1

If NS IRQ get triggered at SPM…

wfi

Before Triggering IRQ, IDLE thread is the
background context:

if (next_thread->r0 == S_IDLE) {
trigger_ns_idle_irq();

}

The preempted context is
the IDLE veneer.

Veneer(IDLE)

S_ISR can’t scheduling.
Tail-chain to NS Handler.

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
תודה

© 2019 Arm Limited

