
© 2020 Arm Limited

Code sharing

Trusted Firmware M

Tamas Ban
Arm

© 2020 Arm Limited2

Motivation

• Cortex-M devices are usually constrained in terms of RAM and flash.

• Secure boot and runtime crypto service has overlapping functionalities.

• Same peripheral drivers are used in bootloader and runtime TF-M.

• Flat memory space, relocation usually not supported.

• Reuse the common code from bootloader and reduce the memory footprint.

© 2020 Arm Limited3

How does it work?

• No standard solution, toolchain dependent

• Manual investigation for shareable code

• Adjust symbol template file, which contains the name of shareable functions

• Sharable function name and address is extracted from bootloader at link time

• The artefacts of shareable code is added to secure firmware at link time

• To avoid symbol collision, shared symbols in secure firmware libraries must be mark as
WEAK

• Linker picks up symbols from bootloader code instead of libraries (mbed-crypto,
platform_s, etc.)

© 2020 Arm Limited4

What type of code can be shared?

• Public functions and global variables

• Easy to share functions with local variables only

• Functions relying on global variables is a bit tricky

• Global variables must be placed to shared symbol section

© 2020 Arm Limited5

Gain in flash utilization

ConfigDefault ConfigProfile-M ConfigProfile-S

ARMCLANG GNUARM ARMCLANG GNUARM ARMCLANG GNUARM

CODE_SHARING=OFF 130012 123440 83612 80244 55008 50352

CODE_SHARING=ON 120560 114368 77524 74340 53484 49088

Difference 9452 9072 6088 5904 2524 1264

• MinSizeRel build type

• Version: 465f73cdedfba5fac6b7430baa4a424d789fed8f + code sharing patches

• MCUboot image encryption is disabled

• Size of secure image:

• MCUboot image encryption is enabled: saving is up to ~13-15KB

© 2020 Arm Limited6

Useability

• If bootloader is immutable then bug in shared code cannot be fixed with firmware
upgrade.

• Global variables must be to shard symbol section.

• Shared global variables might need to be reinitialized in SPE explicitly, low level start-up
does not do it.

• Compiler flag alignment(?)

• Shared code artefacts must be archived because they are needed when new secure
image is built.

• https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/4587

https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/4587

