
1

SMC Fuzzing
Overview of fuzzing in TF-A

6-4-2025

Mark Dykes

Agenda:

• Rundown of Fuzzer fundamentals
• Show features of SMC fuzzer and current status
• Bias tree explanation and examples
• SMC call invocations
• Sanity level description
• Argument constrains
• Error Handling
• References

3

What is Fuzzing?
Various points of interest:

Fuzzing is the ability to
generate random inputs
for a given software or
hardware module

Has capability to control
the amount of
randomness provided to
a module

Is used industry wide for
both software and
hardware

Is used in tandem with
directed testing to find
bugs

Currently utilized in
SDEI testing and
SPM(Hafnium)

4

TF-A SMC Fuzzer

• Integrated into TF-A tests as an explicit tool for fuzzing SMC calls

• Uses bias tree model to choose amongst flavors of SMC that can be layered based on many

criteria

• Testing types can be flexible where combinations of categories can be individually emphasized

• Sanity levels give the user capability to apply constrained randomness at higher values

• Granularities of single SMC calls to multiple groups is feasible

• Highest sanity level gives the user the ability to apply differing constraints types to input arguments

• At present no constraint solver

Current status:

• Fuzzing feature sets for SDEI and FFA

• Found several bugs in SDEI, running more extensive tests for FFA

• Evaluation for usage in other feature sets

5

• All bias references

are numerical and

are only meaningful

when cast against

the other biases in

the given node. It is

possible to have a

bias of zero which

disables that

option(instruction or

class)

Diagram of Bias Tree

Nodes

6

• In this example the

fuzzer chooses the first

level where smc_var1

is weighed against the

other SMC top level

calls and then to

smc_var1_var1,

smc_var1_var2, and

smc_var1_var3 and

then finally to

smc_var1_var3_var1

and

smc_var1_var3_var2 if

smc_var1_var3 is

selected

Generic example of Bias tree
Uses Device Tree format smc_var1 {

 bias = <65>;

 smc_var1_var1 {

 bias = <30>;

 functionname = "smc_var1_var1";

 };

 smc_var1_var2 {

 bias = <30>;

 functionname = "smc_var1_var2";

 };

 smc_var1_var3 {

 bias = <35>;

 smc_var1_var3_var1 {

 bias = <30>;

 functionname = "smc_var1_var3_var1";

 };

 smc_var1_var3_var2 {

 bias = <30>;

 functionname = "smc_var1_var3_var2";

 };

7

• Here is the

representation of a

bias tree where all

SMC calls have an

equal chance of

being selected

provided that SDEI

is chosen. The

functionname is

used by the fuzzer to

call the actual SMC

in another c file. It is

bound to an integer

automatically

assigned.

• sdei {

• bias = <30>;

• sdei_version {

• bias = <7>;

• functionname = "sdei_version_funcid";

• };

• sdei_pe_unmask {

• bias = <7>;

• functionname = "sdei_pe_unmask_funcid";

• };

• sdei_pe_mask {

• bias = <7>;

• functionname = "sdei_pe_mask_funcid";

• };

• sdei_event_status {

• bias = <7>;

• functionname = "sdei_event_status_funcid";

• };

Real World example of Bias tree
SDEI focus

8

• Typically in a file

devoted to that

specific feature set

the calls are

referenced from the

fuzzer output that

was created in the

bias tree file. Each

call has a

corresponding

funcid designation.

• void run_sdei_fuzz(int funcid, struct memmod *mmod, bool inrange, int cntid)

• {

• long long ret;

• if (funcid == sdei_version_funcid) {

• ret = sdei_version();

• if (ret != MAKE_SDEI_VERSION(1, 0, 0)) {

• tftf_testcase_printf("Unexpected SDEI version: 0x%llx\n", ret);

• }

• }

• } else if (funcid == sdei_pe_unmask_funcid) {

• ret = sdei_pe_unmask();

• }

• } else if (funcid == sdei_pe_mask_funcid) {

• ret = sdei_pe_mask;

• }

Implementing SMC Calls issued from Fuzzer
Continued SDEI example

9

• Each SMC call has

a setup of registers

and fields that can

be fuzzed in a

constrained random

fashion or fully

randomized

depending on the

sanity level. Only

sanity level 3 offers

the constraint

capability.

• Sanity Level 0 – Most random. All field boundaries are ignored in the

registers and each register is given a fully random value.

• Sanity Level 1 – Same as level 0 but one register is randomly chosen

where the field values are observed and randomization is applied only

to those widths.

• Sanity Level 2 – All of the fields in the registers are honored and

randomization on those is applied leaving the reserved bits zero(or

one)

• Sanity Level 3- Most constrained. The user can specify a single value,

a range, or a vector or some combination of the three to the fields

Specifying arguments and Sanity Level

10

• A separate text file containing the feature set calls would be created where each SMC would

have the following format:

• smc: <name of call>

• arg<register number 1-17>: <name of register>

• field:<name of field>:[<starting bit>,<ending bit>] = <default value decimal or 0x>

• Each register argument must be specified and the fields contained within. A default value must

also be supplied for reserved bits and/or bits that are to be static at sanity level 3. This

information will be leveraged when constraints are applied in the previous system call c file.

How to specify the format of an SMC call

11

• When applying constraints the user can customize the randomization based upon factors that

might be known only at the run time of the SMC call. This could be the state after previous calls

or system state. The most ideal would be to have SMC invocations that are as independent of

each other as possible so as to limit the complexity of how/when each call is executed and the

required register values. However it is possible to apply calls that are interdependent in a

stricter fashion but that works against the purpose of the tool to find bugs outside the scope of

“desired behavior”. Here is the makeup of a constraint specification:

• setconstraint(<constraint type>,<constraint>,<length of constraint>,<field>,

• <memory pointer(user just passed without consideration)>,<constraint mode>)

Constraint application for Sanity Level 3

12

The constraint type is one of:

Single value

Range of values

Vector of values

Multiple of these can be specified and the fuzzer will choose amongst them in an
equal random fashion

The other field of note is the constraint mode which can be one of:

Accumulation

Exclusive

13

• Accumulation is the mode that gathers all the constraints applied to be chosen randomly by the

fuzzer. This could be any number of any of the constraint types mentioned. The user has no

control of the biases within since each has equal chance of being selected.

• Exclusive only allows one constraint to be applied at a time and erases all previous constraints

given before.

It should be noted that only sanity level 3 will allow constraint application.

14

• All sanity levels

permit calling the

generation of the

arguments before

the SMC in the test.

This permits

prediction of results

from the call and

subsequent handling

if encountering an

expected or

unexpected result.

• Much of the testing will potentially prompt either assertion fails or

hangs in the test which are not visible to the calling module. The error

handling in the fuzzer can take the form:

• ret = sdei_event_signal(inp.x2);

• if (ret < 0) {

• tftf_testcase_printf("sdei_event_signal failed: %lld\n", ret);

• }

• Where handling can manifest panics or print warning or errors. This

allows finding errors that are less catastrophic but no less informative.

Error handling from fuzzer output

15

References:

Read the docs for further details on fuzzing capability:

https://trustedfirmware-a-tests.readthedocs.io/en/latest/fuzzing/index.html

Previous presentation on FFA fuzzing:

https://www.trustedfirmware.org/docs/Fuzzing-Tech-Forum-11Jul24.pdf

https://trustedfirmware-a-tests.readthedocs.io/en/latest/fuzzing/index.html
https://www.trustedfirmware.org/docs/Fuzzing-Tech-Forum-11Jul24.pdf

Thank You

	Slide 1: SMC Fuzzing
	Slide 2: Agenda:
	Slide 3: What is Fuzzing?
	Slide 4: TF-A SMC Fuzzer
	Slide 5: Diagram of Bias Tree
	Slide 6: Generic example of Bias tree
	Slide 7: Real World example of Bias tree
	Slide 8: Implementing SMC Calls issued from Fuzzer
	Slide 9: Specifying arguments and Sanity Level
	Slide 10: How to specify the format of an SMC call
	Slide 11: Constraint application for Sanity Level 3
	Slide 12
	Slide 13
	Slide 14: Error handling from fuzzer output
	Slide 15: References:
	Slide 16

