
© 2020 Arm Limited (or its affiliates)

Basil Eljuse & Saul Romero
Nov 2020

Trace-based Code
Coverage Tooling for

Firmware projects

@TF-A Technical Forum

2 © 2020 Arm Limited (or its affiliates)

Agenda

• Introduction
• Rationale
• Technical Overview
• Tooling Access and Usage
• Future Direction
• Q&A

3 © 2020 Arm Limited (or its affiliates)

About Us

SW Quality organization

within Arm’s

Open Source Software Group

Basil Eljuse - Principal SW Engr – Tech
Lead

Saul Romero - Staff SW Engr – Tooling
Specialist

Focus is on

Quality improvement initiatives

Common hard tooling problems

Automation improvements

Mostly internal faced

Public contributions

big.LITTLE sched-tests (precursor to LISA
tool)

scmi-tests (part of ACS)

qa-tools (most recent contribution)

https://github.com/ARM-software/lisa
https://github.com/ARM-software/scmi-tests
http://gitlab.arm.com/tooling/qa-tools

4 © 2020 Arm Limited (or its affiliates)

Rationale
Why we went down this path?

Motivation

• Emphasis on ‘demonstrable quality’ more than
ever

• Lack of measures => ‘flying blind’
• Code coverage is one useful measure
• Code coverage – feedback with potential for

actionable outcomes
• indicator of test coverage

– Is my test-set good enough?
– Can I direct my test effort better?

• residual risk to quality
– What am I not covering with my current tests?

Problem Statement

• Firmware projects - Traditional coverage tooling
with code instrumentation not an option
• Memory constraint platforms

– code size limitations
• Higher degree of platform code dependency

– emulation expensive and less desirable
• No COTS tooling available

• Need: Perform code coverage measurement
without doing code instrumentation.

5 © 2020 Arm Limited (or its affiliates)

Trace-based Coverage Tooling Design
https://gitlab.arm.com/tooling/qa-tools/-/blob/master/coverage-tool/docs/design_overview.md

• Capture Phase
• Fastmodel - MTI

based custom plugin
captures trace with
instructions executed

• Analysis Phase
• Dwarf signature (-g

compiler flag) – C
source mapping

• Object dump data –
Instruction level
mapping

• Visualisation Phase
• Lcov reports

• Overview

6 © 2020 Arm Limited (or its affiliates)

Current Tooling Capability
What is supported today?

• Statement
coverage

• Function coverage
• Branch Coverage
• Merging of

related coverage
reports

• Baseline viewing
of coverage info

• Lcov Report View

7 © 2020 Arm Limited (or its affiliates)

PREPARE:: Building the model plugin

make -C model-plugin PVLIB_HOME=/path/to/modellib

For TF-A CI:

PVLIB_HOME=$warehouse/SysGen/PVModelLib/$model_version/$model_build/external

Toolchain: aarch64-linux-gnu (we reused the same used by their CI)

Objects created: CoverageTrace.so, CoverageTrace.o, PluginUtils.o

EXECUTE:: Capturing a trace

You need to add two options to your model command-line:

--plugin /path/to/CoverageTrace.so

[-C TRACE.CoverageTrace.trace-file-prefix="/path/to/TRACE-PREFIX”]

Example from TF-A CI:

/arm/warehouse/SysGen/Models/11.6/45/models/Linux64_GCC-4.9/FVP_Base_RevC-2xAEMv8A \

--data cluster0.cpu0=el3_payload.bin@0x80000000 \

--data cluster0.cpu0=ns_bl1u.bin@0x0beb8000 \

--plugin=/work/workspace/workspace/tf-worker/test-
definitions/scripts/tools/code_coverage/fastmodel_baremetal/bmcov/model-
plugin/CoverageTrace.so \

-C bp.flashloader0.fname=fip.bin \

-C bp.secureflashloader.fname=bl1.bin \

-C bp.ve_sysregs.exit_on_shutdown=1 \

-C pctl.startup=0.0.0.0 -Q 1000 "$@"

OUTPUT:: Coverage Trace sample output:

00001ce8 16 4

00001cec 16 4

00001cf0 16 4

00001cf4 16 4

00001cf8 16 4

Capture Phase - Details
Model Trace Interface Plugin

• Instantiate the MTI plugin instance
• Register plugin instance with Simulation
• Discover a trace source “INSTR”
• Register callback handler to record trace “field”

capture in memory
• At termination dump the trace info from

memory to file
Useful Reference - Model Trace Interface Reference
Manual v1.1

https://gitlab.arm.com/tooling/qa-tools/-
/blob/master/coverage-tool/docs/plugin_user_guide.md

8 © 2020 Arm Limited (or its affiliates)

Analysis Phase - Details
https://gitlab.arm.com/tooling/qa-tools/-/blob/master/coverage-tool/docs/reporting_user_guide.md

Objdump

PostProcessing
stage#1

00001ce8 16 4

00001cec 16 4

00001cf0 16 4

00001cf4 16 4

00001cf8 16 4

Elf files MTI Plugin

Intermediate report in Json
format:

• metadata and c-source
files,

• Listing functions and
number lines (in the C file)
with coverage.

• Includes associated asm
lines for the given c-source
line.

Source
tree

9 © 2020 Arm Limited (or its affiliates)

Analysis Phase – Details continued…

PostProcessing stage#2
(generate_info_file.py)

Intermediate report

in Json format

Lcov info files

Merge info files
(merge.py)

Merged

Lcov info file

Source
tree

PostProcessing
stage#2

(generate_info_file.
py)

PostProcessing
stage#2

(generate_info_file.
py)

PostProcessing
stage#2

(generate_info_file.
py)

Intermediate reports in Json format

Source
tree
Source

tree
Source

tree

Lcov info file

To genhtml
reports

10 © 2020 Arm Limited (or its affiliates)

Visualisation Phase - Details
https://gitlab.arm.com/tooling/qa-tools/-/blob/master/coverage-tool/docs/reporting_user_guide.md

The LCOV open source project
(http://ltp.sourceforge.net/coverage/lcov.php) for
visualisation.
• Starting from the JSON file a .info (LCOV)

file(s) is generated
• The HTML code is produced starting from

the .info file and the original C source
code.
• includes information about line, function and

branch coverage
• allows to browse through the source files and

check their coverage.

genhtml --branch-coverage coverage.info --output-directory $OUTDIR

Source
tree

Lcov info file

http://ltp.sourceforge.net/coverage/lcov.php

11 © 2020 Arm Limited (or its affiliates)

Gotchas and Learnings
Is there any catch?

• Optimisation levels (especially -Os) influence coverage stats
• Only source lines with dwarf signature can yield coverage info
• Optimisation can lead to functions be inlined or code removed from binary

• File encoding issues affects post processing
• Lexical analyser to help with source code parsing did not help

• Finally used simple python text parsing logic

• Toolchain bugs affect coverage generation

12 © 2020 Arm Limited (or its affiliates)

Tooling Access and Usage

Where to get this tool from?

• Open sourced the MTI plugin implementation
and the associated post processing scripts
• https://gitlab.arm.com/tooling/qa-tools

• Any feedback or contributions very much
welcomed.
• See https://gitlab.arm.com/tooling/qa-tools/-

/tree/master/coverage-tool#contributing

• Internally used for both TF-A, TF-M and SCP
projects
• TF-M project uses an early proof-of-concept

workflow which uses LAVA setup

How can it help you?

• Tell you where to redirect your testing effort
• Address potential quality risks due to uncovered

code-paths
• Data from the tool can be used to visualize

ongoing coverage trend as your project evolves
• Can provide you with profiling data on executed

instructions – potentially identify bottlenecks or
need for better code reuse

https://gitlab.arm.com/tooling/qa-tools
https://gitlab.arm.com/tooling/qa-tools/-/tree/master/coverage-tool

13 © 2020 Arm Limited (or its affiliates)

Future Direction
What more?

• Extend the trace-based coverage measurement methodology to Silicon platforms
• Early prototype done with Juno platform
• Feasible; but some automation challenges persist

• MC/DC coverage
• We can dump register values in addition to instructions executed
• Early prototype done to show the MTI extension; but more work needed

• Alternative to a custom plugin (MTI)
• Few possibilities with some standard fastmodel trace extensions; Early exploration!

14 © 2020 Arm Limited (or its affiliates)

Q&A

© 2020 Arm Limited (or its affiliates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

ध"यवाद
ارًكش

ধন#বাদ
הדות

