
1

Trusted Firmware-M Technical Overview
Feburary-2023

Abstract

This document supplements the material in the Trusted Firmware-M (TF-M) User Guide (https://tf-m-

user-guide.trustedfirmware.org/index.html) and covers a range of information that will help software

developers to become more familiar with Trusted Firmware-M. The current version of this document

reflects the technical aspects of TF-M version 1.7. The key changes from the previous version 1.6 to the

current release (v1.7) are highlighted in section 7.

1 Background
If you are an embedded software developer, you might have noticed that security requirements for low

cost, low power embedded systems are gaining more attention in the market. Today, many embedded

systems have some form of connectivity, even though many of them are unlikely to be associated with

the IoT buzzword. While taking over an IoT gadget in a home might not give a hacker much direct

benefit, it could give the hacker the ability to attack (a) other devices on the same network, (b) IoT

services that the device is connected to, and (c) the network infrastructure - potentially a mobile phone

network if the device is connected to it. If an IoT device contains personal/valuable information, it

could, of course, make the device significantly more “hacker” attractive.

In the longer term, IoT security is such a strong concern that a number of government organizations

have recently investigated whether there is a need to introduce legislation to improve IoT security in IoT

products. This is in stark contrast to several years ago where many embedded products had no security

requirements (other than firmware read-out protection for preventing 3rd-parties from stealing the

software). However, designing secure applications is not a simple task. Even when you have deployed

well established security features, such as encryption/decryption of communication messages, secure

boot and secure-firmware-update, a simple coding error in your application could still result in the

device being compromised.

To address the challenge of creating secure embedded systems, Arm heavily invested and introduced:

• TrustZone technology in Cortex-M processors – TrustZone provides hardware enforced isolation

between secure firmware and normal applications. This provides a foundation for secure

software architecture.

• The Platform Security Architecture (PSA) initiative and PSA Certified program. PSA defines the

technical requirements and best practices for IoT security by providing specifications and

guidelines. PSA Certified provides a systematic approach which allows vendors to show that the

product achieves a specific level of security.

• Trusted Firmware-M - a reference implementation of secure firmware following the API

specifications from PSA Certified. The source code is available to the ecosystem as open source

under the BSD-3 clause license hosted by the trustedfirmware.org community.

https://tf-m-user-guide.trustedfirmware.org/index.html
https://tf-m-user-guide.trustedfirmware.org/index.html
https://www.trustedfirmware.org/

2

Using these initiatives, Arm partners have started to offer solutions which include PSA Certified devices

and software that works with Trusted Firmware-M. To utilize these solutions, legacy software needs to

be adapted when migrating to the new devices. This document provides an overview of Trusted

Firmware-M and explains how to use it.

2 TrustZone introduction
Before we cover Trusted Firmware-M, let’s start with an introduction of the TrustZone technology.

Figure 1 below illustrates the partitioning between normal application code and secure firmware in a

TrustZone enabled system.

Secure boot

Secure
firmware

Secure worldNon-secure world

Application

Normal boot
code

TrustZone
(Hardware enforced isolation)

Interaction

Figure 1: TrustZone provides hardware enforced isolation, while still allowing interactions between

application code and secure firmware.

A common question we hear from software developers is: Why do we separate the software into Secure

and Non-secure worlds when using TrustZone? And the answer is: If an application running in the Non-

secure world is compromised, TrustZone prevents the attacker from accessing security critical resources,

i.e., firmware update mechanisms (e.g., flash programming interface), secure storage (i.e. where the

crypto keys and certificates are stored) and the random number generator (preventing the

eavesdropping of random numbers used for crypto operations).

In modern IoT software there can be thousands of lines of program code, including software from third

parties, potentially with software bugs lurking inside. Without a security boundary like the one provided

in TrustZone, an attacker could take over the whole system once their attack payload gained privileged

access permission. By having a hardware enforced isolation mechanism, an attacker should not, even

when they have successfully attacked the application running in the Non-secure world, be able to fully

take over a TrustZone enabled system.

You might also wonder why we need TrustZone when there are already Memory Protection Units (MPU)

in legacy systems. While traditional embedded processors like the Cortex-M4 and Cortex-M7 provide

MPUs for process isolation, the fact that interrupt handlers and Real-Time OS (RTOS) run in privileged

state (as opposed to unprivileged state for application threads) means that if a vulnerability is present in

the privileged code an attacker can bypass the MPU. As a consequence, MPUs and privilege separation

are not always the bullet proof solution for IoT security. That said, an MPU is still highly beneficial in

3

enhancing the robustness of embedded systems and can be used in conjunction with TrustZone to give

an extra level of security. Figure 2 below illustrates the use of TrustZone and MPUs together in an

application.

Secure boot

Secure firmware

Secure worldNon-secure world

Application

Normal boot code

TrustZone
(Hardware enforced isolation)

Interaction

Privileged

Unprivileged

RTOS kernel

A
p

p
lic

at
io

n

th
re

a
d

 #
1

A
p

pl
ic

at
io

n

th
re

a
d

 #
2

A
p

p
lic

at
io

n

th
re

a
d

 #
N

Interrupt
handlers

MPU MPU MPU

Non-secure privileged software
(e.g. RTOS) manages Non-secure
MPU for process isolation in the

Non-secure world

Privileged

Unprivileged

Se
cu

re

p
a

rt
it

io
n

 #
1

Se
cu

re

p
a

rt
it

io
n

 #
2

Se
cu

re

pa
rt

it
io

n
 #

M

MPU MPU MPU

Secure partition
manager

Interrupt
handlers

Secure privileged software (e.g.
Secure partition manager))
manages Secure MPU for

process isolation in the Secure
world

Figure 2: TrustZone and MPUs can be used simultaneously in systems that demand strong security.

The use of an MPU for isolating software components from each other in the secure firmware is

optional. This configurability allows several possible software isolation levels. This topic will be covered

in section 4.4.

When a Cortex-M system has TrustZone implemented, it has the following characteristics:

• The address space is partitioned into Secure and Non-secure address ranges. The partitioning

mechanism consists of a programmable Security Attribution Unit (SAU) and device specific

address lookup hardware connected to the Implementation Defined Attribution Unit (IDAU)

interface on the processor.

• When TrustZone is implemented, there can be one MPU for the Secure world and one MPU for

the Non-secure world. Both are optional and can be independently programmed and enabled.

• Secure software can access both Secure and Non-secure address ranges subject to permission

outlined by the Secure MPU. Non-secure software can only access Non-secure address ranges,

providing that is allowed by the Non-secure MPU. Use of each MPU is optional.

• The processor boots up in Secure state at startup and executes the secure firmware. After

initialization of the security hardware and software, it then jumps into the boot code for the

Non-secure world and starts the normal application.

4

• TrustZone for Armv8-M allows direct function calls across security states. This allows

applications running in the Non-secure world to easily access Secure APIs in the Secure world.

• Security state transitions can also happen in exception entries/exits. Each interrupt can be

configured as Secure or Non-secure, with some of the system exceptions also having

configurable target security states. Several system exceptions are banked between security

states, with the fault exception that deals with security violations (SecureFault) always targeting

the Secure state.

For more information on TrustZone operations, please refer to the Armv8-M Architecture Technical

Overview, which is available here:

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-

blog/posts/whitepaper-armv8-m-architecture-technical-overview

Of course, the security capability of a system is also dependent on the hardware design. To help silicon

designers design secure systems, Arm also provides resources to guide them. For example, the

following documents are available on the Arm website.

Document

Trusted Based System Architecture for Armv6-M, Armv7-M and Armv8-M (TBSA-M)
https://developer.arm.com/documentation/100690/0201/

System Design with Armv8-M
https://developer.arm.com/documentation/100767/0100/

Creating a System for a Secure IoT Device
https://developer.arm.com/documentation/101892/0100/Build---Starting-to-develop-an-example-
TBSA-M-system

3 What is Trusted Firmware-M
To help industry create secure IoT products, PSA Certified (www.psacertified.org) carried out a detailed

security analysis and defined the architecture and framework needed to create secure IoT systems. A

number of specifications were also defined, covering software APIs, firmware framework, etc. With

these specifications, software developers can create security firmware. However, the specification on its

own is not enough to enable the software ecosystem to start creating secure IoT products. Many

companies do not have the time or resources to create their own secure firmware. It is also very hard

for beginners in IoT software development to create secure firmware because a wide range of expertise

is required. In addition to knowledge in cryptography and secure data storage, software developers also

need to be familiar with additional functionalities as shown in figure 3. To overcome the

aforementioned challenges, the Trusted Firmware-M project was launched.

https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/whitepaper-armv8-m-architecture-technical-overview
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/whitepaper-armv8-m-architecture-technical-overview
https://developer.arm.com/documentation/100690/0201/?lang=en
https://developer.arm.com/documentation/100767/0100/
https://developer.arm.com/documentation/101892/0100/Build---Starting-to-develop-an-example-TBSA-M-system
https://developer.arm.com/documentation/101892/0100/Build---Starting-to-develop-an-example-TBSA-M-system
http://www.psacertified.org/

5

Cryptography
services

Secure data
storage services

Device attestation
services

Life Cycle State
management

Security
Management (e.g.

software
partitioning, error

handling) Secure boot

Debug
authentication

Firmware update

Secure firmware

Normal
application(s)

Figure 3: Example of functionalities available in typical secure firmware

Trusted Firmware-M (TF-M) is a reference secure firmware that provides functionalities as detailed in

Figure 3, and it follows the specifications from PSA Certified. It provides a range of security APIs which

are available for normal applications, as well as APIs for essential security management.

In a TrustZone enabled system, Trusted Firmware-M executes in the Secure world, and normal

applications run in the Non-secure world (see left hand side of figure 4). Trusted Firmware-M can also

work in other system configurations, e.g., a dual core environment where one of the processors is

dedicated to secure firmware and where the other processor is being used for normal applications (see

right hand side of figure 4). This arrangement requires additional hardware level isolation support

between the two processors in the chip design to protect the secure resources from being directly

accessed by normal applications.

Trusted
Firmware-M

Normal
applications

Isolation via
TrustZone

TrustZone enabled Cortex-M processor

Trusted
Firmware-M

Normal
applications

System with dual Cortex-M processors

CPU #2 CPU #1

Hardware isolation via system design

Figure 4: Two examples showing how Trusted Firmware-M can be deployed in different types of Cortex-

M based devices.

Currently TF-M provides five groups of APIs (https://www.psacertified.org/development-

resources/building-in-security/specifications-implementations/):

https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/
https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/

6

API Website

Cryptography APIs https://arm-software.github.io/psa-api/crypto/

Secure storage APIs https://arm-software.github.io/psa-api/storage/
(This includes Internal Trusted Storage (ITS) and Protected Storage (PS) APIs)

Initial attestation APIs https://arm-software.github.io/psa-api/attestation/
(This can be useful for device provisioning)

Debug authentication https://developer.arm.com/documentation/den0101/latest

Firmware update https://arm-software.github.io/psa-api/fwu/

These software APIs are defined by PSA Certified. Additional specifications and related materials can be

downloaded from the following websites:

Material Website

PSA Certified APIs https://arm-software.github.io/psa-api/

PSA Certified APIs GitHub https://github.com/arm-software/psa-api

PSA Certified Development
resources

https://www.psacertified.org/development-resources/building-
in-security/specifications-implementations/

Status Code API https://arm-software.github.io/psa-api/status-code/

Trusted Firmware-M has the following key characteristics:

Trusted Firmware-M is configurable – there are many configurable parameters available. Secure

software developers can define options such as:

- Which APIs to be included in the project (e.g. choice of crypto algorithms)

- The mechanism used for API call (more on this in section 4.5)

- The software isolation capability (see section 4.4)

Trusted Firmware-M is extendable - In addition to the aforementioned APIs, Trusted Firmware-M also

supports custom defined secure APIs. By allowing secure firmware developers to add secure software

partitions (also known as Application Root-of-Trust), these partitions can provide custom defined APIs.

TF-M is an open-source project – TF-M is a part of the Trusted Firmware project

(https://www.trustedfirmware.org/) and is hosted by Linaro (https://www.linaro.org/), a not-for-profit

organization dedicated in developing software for Arm-based technologies.

TF-M is in production devices – TF-M is already used in a range of devices that are in production. The

project continues to add new features, new platform support and other improvements such as

performance and memory size usage.

Details of TF-M can be found on the following websites:

 Web page address

TF-M home page https://www.trustedfirmware.org/projects/tf-m/

TF-M git repository https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/

TF-M User Guide https://tf-m-user-guide.trustedfirmware.org/
(From this page you can also find the link to the API reference.)

TF-M roadmap https://developer.trustedfirmware.org/w/tf_m/planning/

https://arm-software.github.io/psa-api/crypto/
https://arm-software.github.io/psa-api/storage/
https://arm-software.github.io/psa-api/attestation/
https://developer.arm.com/documentation/den0101/latest
https://arm-software.github.io/psa-api/fwu/
https://arm-software.github.io/psa-api/
https://github.com/arm-software/psa-api
https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/
https://www.psacertified.org/development-resources/building-in-security/specifications-implementations/
https://arm-software.github.io/psa-api/status-code/
https://www.trustedfirmware.org/
https://www.linaro.org/
https://www.trustedfirmware.org/projects/tf-m/
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/
https://tf-m-user-guide.trustedfirmware.org/
https://developer.trustedfirmware.org/w/tf_m/planning/

7

4 Trusted Firmware-M technical details

4.1 TF-M repository quick tour
While you can find the development branch of TF-M in https://git.trustedfirmware.org/TF-M/trusted-

firmware-m.git/tree/, for most projects you would likely want to use a stable release, which can be

found here: https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/

To compile TF-M you need a range of software tools, and these include compiler, Python and additional

Python modules. The repository contains build scripts for the Arm Compiler (armclang), for the IAR Arm

Compiler and for GCC. The build system is based on CMAKE. In addition, you would also need Python

and a range of Python modules. The tool dependency required to compile TF-M is shown in figure 5:

Figure 5: Tool dependency chain (Diagram from TF-M user guide)

To install the required Python modules, please use the file tools/requirements.txt (details are

available in https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html). If you are moving

from TF-M 1.5 or 1.6 to 1.7, please note there are new tool dependencies. The file

tools/requirements.txt has been updated and, as a result, you will need to install the

additional tools using pip3. For example:

 Steps to install Python modules

Linux pip3 install --upgrade pip

cd trusted-firmware-m

pip3 install -r tools/requirements.txt

Windows cd trusted-firmware-m

pip3 install -r tools\requirements.txt

or
{python_path}\python -m pip install -r tools\requirements.txt

Note: Specifying the python path might be required if you have multiple versions of
Python installed. See “Tips” below.

Tips:
In some systems you might have multiple versions of Python installed and thus you will need to make
sure the Python modules are installed on the specific version used by the TF-M build system. For
example, in Windows systems, you can use the “where” command to check the available Python
versions in the search paths (In the example below I have two versions of Python installed):

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/
https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html

8

 cmd>where python
 C:\Program Files\Python37\python.exe
 C:\Users\<username>\AppData\Local\Microsoft\WindowsApps\python.exe
 cmd>

The TF-M build system is likely to pick the most up-to-date Python release and you would therefore
need to install the required python modules (listed in https://git.trustedfirmware.org/TF-M/trusted-
firmware-m.git/tree/tools/requirements.txt) using a command like:
 cmd>C:\Users\{username}\AppData\Local\Microsoft\WindowsApps\python -m pip install -r
tools\requirements.txt

Similarly, on Linux systems, you can use “which” command to search for the installed Python
environment(s).

Note:
The file tools/requirements.txt in the first release of TF-M 1.7 is missing “windows-
curses”. You might need to install that manually using the following command:
> pip install windows-curses

Or
>{python_path}\python -m pip install windows-curses

The Getting Started page (https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html)

provides details on compiling and running the default test suite for AN521, an FPGA platform (or the

equivalent Fixed Virtual Platform (FVP) model).

The TF-M repository contains a build system based on CMAKE. Because TF-M supports a wide range of

features to assist device security for many different use cases, making all the features accessible via a

simple IDE build environment is very challenging and often impractical. As a result, one of the key design

choices of a TF-M project is to enable a command line build system based on CMAKE.

After the secure firmware is created, the applications running in the Non-secure world can be created

using a traditional IDE. This is covered in section 5.5.

Descriptions of the TF-M source structure can be found in the following page:

https://tf-m-user-guide.trustedfirmware.org/integration_guide/source_structure/source_structure.html

Out-of-the-box, TF-M supports a number of hardware platforms. The supported hardware platforms are

listed in https://tf-m-user-guide.trustedfirmware.org/platform/index.html, and the corresponding

platform specific codes are located in https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/platform/ext/target. For information on the platform folder and on porting TF-M to a new

hardware, please refer to:

• https://tf-m-user-

guide.trustedfirmware.org/integration_guide/source_structure/source_structure.html#platform

• https://tf-m-user-

guide.trustedfirmware.org/integration_guide/platform/porting_TFM_to_a_new_hardware.html

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/tools/requirements.txt
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/tools/requirements.txt
https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/source_structure/source_structure.html
https://tf-m-user-guide.trustedfirmware.org/platform/index.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/platform/ext/target
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/platform/ext/target
https://tf-m-user-guide.trustedfirmware.org/integration_guide/source_structure/source_structure.html#platform
https://tf-m-user-guide.trustedfirmware.org/integration_guide/source_structure/source_structure.html#platform
https://tf-m-user-guide.trustedfirmware.org/integration_guide/platform/porting_TFM_to_a_new_hardware.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/platform/porting_TFM_to_a_new_hardware.html

9

Please note, the TF-M repository pulls in external repository during the build process. For example:

• mbedcrypto (for PSA crypto implementation)

• MCU boot (for secure boot)

4.2 Configuration of TF-M
TF-M is configurable. Examples of key configuration options in TF-M include:

Item Choice

Firmware framework model Inter-process communication (IPC) model or Secure Function
model

Isolation level 1, 2 or 3

Profile Small, medium without Application Root-of-Trust (ARoT-
less), medium, large

Cryptography support A choice of crypto algorithms are available. See section 5.3

In addition, there are configuration parameters for:

• processor related options (e.g. support for the floating-point unit)

• regression testing,

• selecting between different types of build targets (e.g. Debug vs Release), and

• deciding whether bootloader should be built as part of the build process.

TF-M provides several mechanisms for configurating the firmware:

• Using one of the predefined profiles when building the firmware – This is one of the most

common choices. See section 4.3 about TF-M profiles and section 5.2 to see an example of

creating TF-M with the “small” profile.

• Using a custom defined profile when building the firmware – This could be a good solution if the

configuration needed is slightly different from a pre-defined profile.

• Launching Kconfig when building the firmware – This is suitable for beginners and is currently

limited to a subset of TF-M features. This is new in TF-M version 1.7. See section 5.4.

• Using the base configuration (firmware framework only) and adding features based on

application requirements. You can override the default options using command line options: For

example, select isolation level to 1 using -DTFM_ISOLATION_LEVEL=1.

Note:
There are many changes to the configuration methods in TF-M v1.7 when compared to v1.6.
In TF-M 1.6 and older versions, most of the configuration parameters are based on CMAKE variables
and CMAKE configuration files. In version 1.7, some of those configuration options are defined by C
macros in C header files. This change makes it easier for the TF-M code to be compiled using
traditional MCU tools. CMAKE variables are still being used for the remaining options.

10

4.3 TF-M Profiles
TF-M is designed to cover a wide range of application scenarios. As a result, it has many different

configuration options and can be customized as small secure firmware for devices with limited memory

resources, or as feature rich secure firmware. However, the wide range of configurability can make it

hard for software developers to decide how best to proceed. To overcome this, TF-M has four example

profiles which provide the required configurations for the most commonly used cases. These are:

- small,

- medium ARoT-less (medium without Application Root-of-Trust. This is new in TF-M v1.7),

- medium, and

- large.

These profiles help software developers configure their TF-M projects for their application requirements

and for PSA certification. Use of these profiles are not mandatory. Software developers can create their

own custom profiles to configure TF-M.

The following table lists the key aspects of the small, medium ARoT-less, medium and large profiles:

Profile Small Medium ARoT-
less

Medium Large

Firmware
framework
model

Secure Function
(SFN) model

Secure Function
(SFN) model

Inter-Process
Communication
(IPC) model

Inter-Process
Communication
(IPC) model

Isolation level 1 1 2 3

Internal Trusted
Storage

ITS has
decreased
internal transient
buffer size

Full ITS features Full ITS features Full ITS features

Protected
storage

- (off by default) - (off by default) Implemented if off-
chip storage device
is integrated.

Implemented if off-
chip storage device
is integrated.

Crypto –
symmetric

Supported Supported Supported Supported

Crypto –
asymmetric

- Supported Supported Supported

Secure boot Lightweight boot
* Single image
boot
* Anti-rollback
protection

Lightweight boot
* Multiple image
boot
* Anti-rollback
protection

Lightweight boot
* Multiple image
boot
* Anti-rollback
protection

Anti-rollback
protection, multiple
image boot.

Initial attestation Based on
symmetric key
algorithms

Based on
asymmetric key
algorithms

Based on
asymmetric key
algorithms

Based on
asymmetric key
algorithms

Firmware update - (off by default) Supported Supported Supported

Software
countermeasures
against physical
attacks

- - - Supported
(optional)

11

Information on these profiles is available as follows:

• Small : https://tf-m-user-

guide.trustedfirmware.org/configuration/profiles/tfm_profile_small.html

• Medium ARoT-less (Medium without Application Root-of-Trust): https://tf-m-user-

guide.trustedfirmware.org/configuration/profiles/tfm_profile_medium_arot-less.html

• Medium : https://tf-m-user-

guide.trustedfirmware.org/configuration/profiles/tfm_profile_medium.html

• Large : https://tf-m-user-

guide.trustedfirmware.org/configuration/profiles/tfm_profile_large.html

Each profile has a corresponding CMAKE configuration file that defines the configurations:

• Small : https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/config/profile/profile_small.cmake

• Medium ARoT-less: https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/config/profile/profile_medium_arotless.cmake

• Medium : https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/config/profile/profile_medium.cmake

• Large: https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/config/profile/profile_large.cmake

In TF-M, the implemented crypto algorithms are based on the selected TF-M profile, and the crypto

configurations are determined according to the specific application scenario defined in the profiles. The

build script selects configuration files in this location: https://git.trustedfirmware.org/TF-M/trusted-

firmware-m.git/tree/lib/ext/mbedcrypto/mbedcrypto_config

Profile Header files for cryptography support in each profile

Default (none of the
small/medium/large profiles
is specified)

crypto_config_default.h
tfm_mbedcrypto_config_default.h

Small crypto_config_profile_small.h
tfm_mbedcrypto_config_profile_small.h

Medium / Medium ARoT-less crypto_config_profile_medium.h
tfm_mbedcrypto_config_profile_medium.h

Large crypto_config_profile_large.h
tfm_mbedcrypto_config_profile_large.h

In addition, depending on the platform, a header file tfm_mbedcrypto_config_extra_nv_seed.h could be

used to define entropy related options.

When building the TF-M program image, software developers can select one of profiles detailed below

based on their application requirements using a command line option:

https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_small.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_small.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_medium_arot-less.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_medium_arot-less.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_medium.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_medium.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_large.html
https://tf-m-user-guide.trustedfirmware.org/configuration/profiles/tfm_profile_large.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_small.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_small.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_medium_arotless.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_medium_arotless.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_medium.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_medium.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_large.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/profile/profile_large.cmake
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/lib/ext/mbedcrypto/mbedcrypto_config
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/lib/ext/mbedcrypto/mbedcrypto_config

12

Profile Command line option

Small -DTFM_PROFILE=profile_small

Medium ARoT-less -DTFM_PROFILE=profile_medium_arotless

Medium -DTFM_PROFILE=profile_medium

Large -DTFM_PROFILE=profile_large

For example, to select “small” profile when building a TF-M for the Musca-S1 development board

(Target “arm/musca_s1” is under platform/ext/target/ directory) on Windows, the following commands

could be used:

>git clone https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/
>cd trusted-firmware-m
>cmake -G”Unix Makefiles” -S . -B cmake_build -DTFM_PLATFORM=arm/musca_s1 ^
 -DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake ^
 -DTFM_PROFILE=profile_small ^
 -DCMAKE_BUILD_TYPE=Debug
>cmake –build cmake_build – install

If there is a need to customize the features, you can, instead of using one of the existing profiles, create

custom profile files in {TFM_PATH}/config/profile and use a custom profile file instead.

It is also possible to override the crypto configuration of a selected profile by, for example, including

additional cryptography algorithms and editing the configuration file in

{TFM_PATH}/lib/ext/mbedcrypto/mbedcrypto_config. An example of adding a

cryptography algorithm for a “small” profile can be viewed in section 5.3.

TF-M version 1.7 introduced a base configuration. The base build includes the Secure Partition Manager

(SPM) and platform support code only. This allows users to start from the TF-M skeleton/framework and

enable services as required. If a profile is not specified, the settings in the base configuration would be

used. Further information about the base configuration is available here:

https://tf-m-user-guide.trustedfirmware.org/configuration/index.html#base-configuration

4.4 Isolation Levels

4.4.1 Overview of isolation levels
Currently, Trusted Firmware-M provides three levels of software isolation: 1, 2 and 3, based on the

Firmware Framework-M (FF-M) specification from PSA Certified. The creation of TF-M and FF-M are

based on a comprehensive set of security models, and it is from these models that the required isolation

boundaries are defined. TF-M conforms to the mandatory isolation rules in the FF-M.

The isolation levels describe the overall strength of isolation, with the higher level introducing more

isolation boundaries. In addition to the isolation levels, software developers can, if needed, implement

software isolation between PRoT (PSA Root of Trust) components. PRoT components can be placed

within a single partition or contained within their dedicated partitions so that they are isolated from

each other. This is an implementation defined choice and is not a requirement of the FF-M specification.

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/
https://tf-m-user-guide.trustedfirmware.org/configuration/index.html#base-configuration

13

Each isolation level has its corresponding isolation rules. These rules describe the granularity for

isolation, i.e. whether the constant data/code needs to be isolated or not, whether the Secure Partition

Manager (SPM) should execute codes that are outside the SPM etc.

4.4.2 Level 1 isolation
This level isolates secure firmware and the secure boot from normal application(s). In a TrustZone

enabled Cortex-M system, the secure firmware, secure boot and hardware resources required for

security management (e.g. secure data storage, crypto engine, random number generator) are within

the Secure world. Normal applications and general hardware resources are within the Non-secure

world. This is illustrated in Figure 6.

Secure firmware

Secure boot
Secure

hardware
drivers

Trusted Firmware-M

PSA Root of
Trust

(Critical
security
services)

Application Root of
Trust

(Additional security
services - optional)

TrustZone isolation

Normal application(s)

Applications can
access secure

services via APIs
defined in PSA

Figure 6: Level 1 isolation using TrustZone for Armv8-M

For systems with multiple processors, the isolation could be handled using system level arrangements as

follows:

• Running Secure firmware and normal application(s) on different processors.

• Using system level hardware isolation to ensure that the processor running a normal

application(s) is not able to access hardware resources for the Secure world.

• Normal applications using Firmware Framework-M APIs to request secure services from secure

firmware. Inside the TF-M, an inter-processor communication mechanism is used to enable the

processor running normal applications to communicate with the processor running the secure

firmware.

For cost sensitive IoT systems, TrustZone is a better choice as it only requires a single processor.

4.4.3 Level 2 isolation
Level 2 isolation is a superset of level 1 isolation. Within the secure firmware, another isolation

boundary is added to separate critical security software from non-critical security software (Figure 7

refers). The non-critical security software, also known as Application Root-of-Trust in PSA Certified

terminology, could be the Protected Storage APIs, or custom defined application-level security APIs.

14

Secure firmware

Secure boot
Secure

hardware
drivers

Trusted Firmware-M

PSA Root of
Trust

(Critical
security
services)

Application Root of
Trust

(Additional security
services - optional)

TrustZone isolation

Normal application(s)

Applications can
access secure

services via APIs
defined in PSA

MPU isolation

Figure 7: Level 2 isolation using MPU together with TrustZone for Armv8-M

In Cortex-M processors, the additional isolation is handled by the Memory Protection Unit (MPU). The

Secure Partition Manager (SPM) within Trusted Firmware-M handles the configuration of the Secure

MPU when there are context switches in the Secure side. When using this arrangement, application

root-of-trust software executes in the secure unprivileged state.

4.4.4 Level 3 isolation
In some applications there can be multiple services in the Application Root-of-Trust (ARoT). Based on

the requirement of level 3 isolation, these secure services need to be isolated from each other. As a

result, TF-M supports isolation level 3 to provide isolation between ARoT components.

Using this isolation level, each of the Application Root-of-Trust are isolated from each other using the

Secure MPU (Figure 8 refers).

Secure firmware

Secure boot
Secure

hardware
drivers

Trusted Firmware-M

PSA Root of
Trust

(Critical
security
services)

Application Root of
Trust #1

(Additional security
services - optional)

TrustZone isolation

Normal application(s)

Applications can
access secure

services via APIs
defined in PSA

MPU isolation

Application
Root of
Trust #2

Application
Root of
Trust #3

Figure 8: Level 3 isolation using MPU together with TrustZone for Armv8-M

15

4.4.5 Configuration of isolation level in TF-M
The isolation level in TF-M is defined using a parameter called the TFM_ISOLATION_LEVEL. Please note

that this does not necessarily map to PSA Certified Levels. For devices that are certified using the PSA

Certified scheme, the required isolation level depends on the PSA Certified level:

• PSA Certified Level 1 can use isolation levels 1, 2 and 3.

• PSA Certified Level 2 can use isolation level 2 and 3, or if the secure firmware does not contain

any Application Root of Trust partition (i.e. ARoT-less), then isolation level 1 can be used (See

note below).

• PSA Certified Level 3 must use isolation level 3.

Please note that a higher level of isolation can, due to the additional steps needed to setup the Secure

MPU, increase the code size and software execution overhead.

Note:
The ARoT-less protection profile was introduced in 2022-Q4. This allows devices with constrained
code size capacity to support PSA Certified Level 2 when the application does not require Application
Root-of-Trust. Prior to that, to reach PSA Certified Level 2, a device would have to support isolation
level 2 or level 3- something that would require a considerable amount of code space.

4.4.6 Additional information on isolation support
In the current TF-M implementation, program codes of software components within PSA Root-of-Trust

(PRoT) share, to simplify implementation, the same boundary. This simplification (i.e. the reduction of

isolation) does not risk the program code for one software component being modified /corrupted by

another. This is because program memories in most microcontrollers are based on read-only Non-

volatile memories (e.g. flash memories) and cannot be changed apart from using a flash programming

sequence. Consequently, PRoT’s code and its constant data are visible to other secure software.

However, read-write data for PRoT is isolated and protected. This arrangement enables TF-M to be used

on a wider range of devices with limited hardware resources.

The secure partition manager (SPM) does not directly manage the hardware resources for enforcing the

isolation. Instead, the isolation hardware resources are managed by an isolation hardware abstraction

layer (HAL) APIs, with the internal details of these APIs being dependent upon the isolation level

selected. When the TF-M switches between partitions, the SPM uses the isolation HAL APIs to switch the

partition’s isolation boundaries.

Based on the hardware used, although the implementation of isolation HAL APIs might need to be

modified the SPM code can remain unchanged.

4.5 Secure API interface mechanism

4.5.1 Overview
The API specifications in PSA Certified are agnostic to the processor architecture and can be applied to a

range of different devices. As a result, the API interface mechanism defined by the PSA is also hardware

independent. In order to provide a generic interface that works across a wide range of devices, PSA

Certified defines a software interface between Secure firmware and normal applications. This interface

16

is a part of the PSA Firmware Framework (PSA-FF) specification. A Cortex-M specific PSA Firmware

Framework-M (PSA-FF-M) is also available.

Within the Firmware Framework specification, two interface models are provided:

- The Inter process communication (IPC) model

- The Secure Function (SFN) model – a lighter weight version that has a lower software overhead.

Different software interface models are needed due to the trade-off between security capability

(isolation strength) and execution efficiency. The first version of the Firmware Framework-M (PSA-FF-M)

only provides the IPC model, which although it provides great security capability has a relatively high

software execution overhead. To overcome this, an API model, called Library model, was introduced into

TF-M to reduce the overhead. Unfortunately, the Library model has several disadvantages. So, in FF-M

version 1.1, the Secure Function (SFN) model was introduced to reduce execution overhead, resulting in

the Library model being removed from TF-M version 1.7 as it was superseded by the SFN model. As a

result of this development, information for the Library model is not covered in this document. Detailed

analysis of the Library model can be found in appendix C of the Arm Firmware Framework-M v1.1

extensions (https://developer.arm.com/documentation/aes0039/latest)

Before I dive into the technical details of the two API models, because some understanding is required

of the TrustZone mechanisms, let me start by introducing the secure API support that is available in

TrustZone for Armv8-M.

4.5.2 Secure API support in TrustZone for Armv8-M
TrustZone for Armv8-M allows Non-secure software to call Secure APIs using a normal BL (Branch and

Link) instruction, the same instruction that is used for standard function calls. However, to make the

function call mechanism secure, the following restrictions are in place:

1) The first instruction in the Secure API being called must be an SG (Secure Gateway)

instruction.

2) The address of the first instruction in the Secure API being called must be marked as Non-

secure Callable (NSC).

3) As in normal secure codes, the address of the Secure API must be executable and accessible

under the permission of the Secure MPU.

The SG and NSC mechanisms ensure that Non-secure codes cannot branch into the middle of a Secure

function. The NSC memory attribute ensures that binary data within the Secure code that reassembles

the encoding of the SG instruction cannot be mis-used as an entry point. The definition of NSC region(s)

is based on the address configuration settings in the Security Attribution Unit (SAU) and in the

Implementation Defined Attribution Unit (IDAU).

Instead of having lots of small NSC regions, each at the starting point of a Secure function, the Secure

entry points are grouped together so that they can share a single NSC region. This is illustrated in figure

9.

https://developer.arm.com/documentation/aes0039/latest

17

secure_func_A:

 BXNS LR ; return to NS world

secure_func_B:

 BXNS LR ; return to NS world

SG
B secure_func_A
SG
B secure_func_B
...
...

Group of branch veneers
placed in a Non-secure
Callable (NSC) region

TrustZone boundary

Secure worldNon-secure world

 secure_func_A();

 secure_func_B();

Application code (in C/C++)

Figure 9: A branch veneer table is used to direct Secure API calls to Secure function addresses.

To help software developers create Secure APIs, Arm C Language Extension (ACLE) defines a range of

tool chain features e.g. function attribute for secure APIs. The information relating to this is documented

in the Cortex-M Security Extension (CMSE, https://arm-software.github.io/acle/cmse/cmse.html).

Using the CMSE support features in the C/C++ compiler, the compiler generates information about the

secure APIs in the object file and ensures that the function returns use BXNS instead of a normal return

instruction. The linker then generates the branch veneer table automatically using the secure APIs

information provided by the compiler. This is illustrated in figure 10.

https://arm-software.github.io/acle/cmse/cmse.html

18

void __attribute__((cmse_nonsecure_entry)) secure_func_A(int x)
{

}

int __attribute__((cmse_nonsecure_entry)) secure_func_B(int y)
{

}

Secure software

Compile

Object file containing
secure APIs

secure_func_A:

 BXNS LR ; return to NS world

secure_func_B:

 BXNS LR ; return to NS world

secure_func_A_entry:
 SG
 B secure_func_A
secure_func_B_entry:
 SG
 B secure_func_B
 ...
 ...

Link

Secure program image

Linker

script

Memory layout,
including placement

of branch veneers

Branch veneers
generated by the linker

Secure APIs

Export library

Symbols of API (address info)

secure_func_A (=address
of secure_func_A_entry)
secure_func_B (=address
of secure_func_B_entry)
...
...

Figure 10: Branch veneer table and export library are generated by a linker during the compilation flow

In addition to the Secure program image, the linker also generates an export library. This file contains

the address information of the Secure APIs and is used by a linker when developing a Non-secure

program(s). The address information (i.e. symbols) enables the linker to insert right branch addresses

where the Non-secure code calls Secure APIs. This is illustrated in figure 11.

19

 secure_func_A();

 secure_func_B();

Non-secure application code
(in C/C++)

Compile

Link

Export library

Symbols of API
(address info)

Linker script for

Non-secure

project

Object file containing
secure API calls

Non-secure project image

Figure 11: Export library generated from Secure firmware project is needed for building a Non-secure

project

When using TF-M, after the secure project is compiled and the program image is generated, the export

library (which should be shared with Non-secure software developers) is available in the following

location:

 trusted-firmware-m/cmake_build/install/interface/lib/s_veneers.o

Note: The secure program image can be found in trusted-firmware-m/cmake_build/install/outputs

4.5.3 TF-M Non-secure interface
Although TF-M supports a wide range of APIs (e.g. Crypto, secure storage, initial attestation, etc.), the

actual interface between Secure and Non-secure program images are reduced to a few interface calls

based on the PSA Firmware Framework-M (FF-M) specification. As a result, when creating a Non-secure

software project that utilizes the Secure APIs, the project needs to include a few C files to handle the

redirection of secure API calls. The program files required can be found in these locations:

• https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src

• https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/include

However, instead of directly taking all the source files from these locations, Non-secure software

developers should take the files from cmake_build/install/interface. This is because some of the source

files might not be required. During the compilation of the secure firmware, the compilation script only

copies the files that are required into the cmake_build/install/interface directory.

The use of Non-secure interface source files in secure API calls is illustrated in the following diagram:

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/include

20

Application codes Secure APIs

tfm_crypto_api.c

tfm_fwu_api.c

tfm_attest_api.c

tfm_its_api.c

tfm_ps_api.c

tfm_platform_api.c

tfm_psa_framework_version_veneer

tfm_psa_version_veneer

tfm_psa_close_veneer

tfm_psa_connect_veneer

tfm_psa_call_veneer

tfm_ns_interface_dispatch()

tfm_ns_interface_dispatch()

tfm_ns_interface_dispatch()

tfm_ns_interface_dispatch()

tfm_ns_interface_dispatch()

RTOS specific semaphore
wrapper

psa_framework_version()

psa_version()

psa_close()

psa_connect()

psa_call()

tfm_psa_ns_api.c

TrustZone
boundary

Secure API branch veneers

Non-secure world Secure world

tfm_psa_ns_connection_api.c
(only needed for connection

based RoT services. Not
required by default.)

Figure 12: Secure API function call mechanism

(Note: The filenames for the Non-secure interface in TF-M v1.7 are different from TF-M v1.6).

Non-secure applications should use the APIs provided in the interface functions, which provide the

interface as defined in the PSA Crypto/Secure storage/Attestation APIs.

Within the interface functions, a mutual exclusive (mutex) mechanism is added using an RTOS specific

mutex wrapper. This prevents multiple Non-secure software contexts from calling secure APIs in the

secure firmware at the same time.

Note:
A template of the wrapper is available in
https://git.trustedfirmware.org/TF-M/trusted-firmware-
m.git/tree/interface/src/tfm_ns_interface.c.example
Application developers must customize the RTOS specific wrapper based on the RTOS that they are
using.

A wrapper for mutex functions in FreeRTOS is available in the following location:
https://github.com/FreeRTOS/FreeRTOS-
Kernel/blob/main/portable/ThirdParty/GCC/ARM_TFM/os_wrapper_freertos.c

There are several reasons not to support a multiple concurrent secure API. If a system needs to support

multiple secure APIs running simultaneously, the complexity of the secure firmware and the memory

size required would both increase. In real world applications, the probability of having multiple secure

API calls happening at the same time is quite small. As a result, the current version of TF-M only allows

one secure service at a time. If an application thread tries to call a secure API when there is already a

secure service on-going, the mutex in the wrapper will delay the application thread until the on-going

Secure service has been completed.

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src/tfm_ns_interface.c.example
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src/tfm_ns_interface.c.example
https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/portable/ThirdParty/GCC/ARM_TFM/os_wrapper_freertos.c
https://github.com/FreeRTOS/FreeRTOS-Kernel/blob/main/portable/ThirdParty/GCC/ARM_TFM/os_wrapper_freertos.c

21

If the mutex wrapper is not used, and if a Non-secure code calls a Secure API when another secure API is

still in progress (e.g. started by another Non-secure thread), the TF-M API code would return a fail

status. Thus, the mutex wrapper is added to make the Secure API mechanism RTOS friendly (By delaying

a new Secure API call until the on-going Secure-API call is completed).

Software developers can, if they so wish, use any other mechanism to avoid multiple secure APIs from

being called simultaneously. For multiple core systems, if the secure firmware running on the “secure”

processor can deal with multiple secure API requests at the same time, then it is fine to remove the

mutex.

The C codes in the Non-secure interface directory also contains a file called

tfm_psa_ns_connection_api.c. This file provides:

• psa_connect() – for starting an API

• psa_close() – for disconnecting

This is only needed when the secure firmware provides connection-based Root-of-Trust (RoT) services.

By default, this file is not required because all the services in TF-M are stateless (Non-connection-based).

4.5.4 TF-M runtime models: IPC and SFN
In section 4.5.1 we introduced the two Secure API models available in TF-M 1.7:

- Inter Process Communication (IPC) model

- Secure Function (SFN) model (Note: This was introduced in FF-M version 1.1 to reduce execution

overhead and memory footprint when compared to IPC.)

The API models define how the Secure Partition Manager (SPM) accesses/invokes services within

software partitions and how the secure services are managed. Information on these two models are

documented in the following page: https://tf-m-user-

guide.trustedfirmware.org/integration_guide/spm_backends.html

A summary description of the two models is copied here:

• IPC backend: In this backend, the SPM and each Secure Partition have their own execution
contexts, which is required to support the IPC model Secure Partitions. This also enables the
SPM to provide higher isolation levels. This SPM backend acts like a multiple-process system. It
can also adopt SFN model Secure Partitions.

• SFN backend: The SFN backend provides more efficient executions because it shares a single-
thread execution context with all the Secure Partitions. This SPM backend acts like a single
library. Therefore, it can only adopt SFN model Secure Partitions. And it does not support higher
isolation levels. On the other hand, it consumes less memory compared to the IPC backend.

And in slightly more detail:

• The TF-M internal task scheduling mechanism operates differently when either of the 2 models

are used

https://tf-m-user-guide.trustedfirmware.org/integration_guide/spm_backends.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/spm_backends.html

22

o When using the IPC model, each partition contains a thread that “listens” to incoming

service requests from the Secure Partition Manager (SPM). The SPM is responsible for

dispatching API calls received from Non-secure software to the secure partitions.

o When using the SFN model, after receiving a Secure API service call from the Non-secure

software, the SPM directly calls the functions within the partitions. This arrangement

avoids the delay caused by the IPC mechanisms between the SPM and the partitions.

• The IPC model enables TF-M to be used in systems that do not have a shared memory. In such

systems, the information can be passed using a communication interface or a mail-box device.

 Additional information about the IPC/SFN can be found here:

https://tf-m-user-guide.trustedfirmware.org/design_docs/services/secure_partition_manager.html

When creating secure firmware using TF-M, software developers can define which runtime model to use

by using a CMAKE variable:

 CONFIG_TFM_SPM_BACKEND

IPC model IPC

SFN model SFN

Based on the configuration method used, this variable is setup based on

• The TF-M profile selected, or

• The configuration choice in the Kconfig menu, or

• The command line option that overrides “CONFIG_TFM_SPM_BACKEND” when building the

secure firmware. For example, “-DCONFIG_TFM_SPM_BACKEND=SFN”

From a Non-secure project point of view, both the IPC and SFN models have the same interface

functions as defined by the PSA Certified specifications. The API calls also route through the same RTOS

specific mutex wrapper. As a result, the same Non-secure application code can work with both IPC and

SFN models.

4.5.5 IPC and SFN models: Which model should I use?
To decide which API model should be used, several aspects should be considered:

• The selection of the runtime model is dependent upon the TF-M profiles:

o Small profile or Medium ARoT-less profile: SFN model

o Medium or large profiles: IPC model

• For devices with small memory sizes and lower processing performance, the SFN model is better

as it has a lower software execution overhead. It is the default model used for a small profile.

However, SFN is available only for isolation type 1. If the project requires isolation type 2 or type

3, the IPC model is required.

• The IPC model provides stronger software isolation capability and is more suitable for devices

with multiple processors.

Both IPC and SFN models are compliant with the PSA Firmware Framework specification. From a Non-

secure software point of view, the interface of these two models is the same, so generally speaking the

choice between IPC and SFN has no impact on the design of the Non-secure software.

https://tf-m-user-guide.trustedfirmware.org/design_docs/services/secure_partition_manager.html

23

4.6 OS interface

4.6.1 Mutual Exclusive (Mutex)
In application environments in TrustZone enabled systems with an OS or RTOS running in the Non-

secure world, there can be multiple software contexts trying to access TF-M services. Currently TF-M

only supports single context, so it is necessary to restrict access to TF-M services. To prevent multiple

software contexts from accessing secure API services at the same time, OS mutex operations are

integrated in the Non-secure interface of the TF-M APIs.

As shown in section 4.5.3, the TF-M API calls are wrapped through a function called

tfm_ns_interface_dispatch(). This function limits the application to one secure service call at a time

using mutex operations and should be customized base on the RTOS being used.

From the TF-M service point of view, since there is only one service at a time, there is no need to

consider multiple contexts. This reduces API complexity and memory footprint and is the preferred

solution for TF-M running in microcontrollers where the memory size is limited.

Please note this mutex arrangement is for TrustZone based systems. In dual-core systems, the PSA API

for the Non-secure world is implemented in another way and the arrangement can be more flexible and

is platform specific. For more information on dual core implementation, please visit the following page:

https://tf-m-user-guide.trustedfirmware.org/design_docs/dual-

cpu/mailbox_design_on_dual_core_system.html

An example implementation of the Non-secure interface for a dual core system can be found at:

https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/interface/src/multi_core/tfm_multi_core_psa_ns_api.c

4.6.2 Non-secure Client Extension
In some cases, application threads running in the Non-secure world are mutually distrusted. To enable

the isolation of information that Non-secure applications share with secure APIs, TF-M supports an

optional Non-secure Client Extension (NSCE) for TrustZone based systems.

When using NSCE, an OS or RTOS running in the Non-secure world needs to provide TF-M with the

identification of the software context using ID values. Secure services can then ensure that information

associated with one application context will not be visible to another application context. For example, if

Non-secure application A shared its crypto key with crypto APIs with NSID=app_a, when another Non-

secure application requests access/use this key, TF-M will check if the caller has NSID==app_a, and block

the request if the ID value does not match. To allow TF-M to be aware of the current context, the

context switching code in the Non-secure OS needs to include TF-M context management via several

dedicated APIs. (These APIs are supported in TrustZone based systems only).

By default, NSCE is disabled in TF-M, but can be enabled by setting a configuration parameter called

TFM_NS_MANAGE_NSID.

https://tf-m-user-guide.trustedfirmware.org/design_docs/dual-cpu/mailbox_design_on_dual_core_system.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/dual-cpu/mailbox_design_on_dual_core_system.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src/multi_core/tfm_multi_core_psa_ns_api.c
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src/multi_core/tfm_multi_core_psa_ns_api.c

24

An ID scheme is used to distinguish between the different software contexts running in the Non-secure

world. NSCE supports two types of IDs:

• Group ID (gid, unsigned 8-bit) – this is used for separating between NSCE contexts.

• Thread ID (tid, unsigned 8-bit) – this is currently not used by NSCE for context separation.

Multiple threads can share the same GID.

The GID and TID are managed by the OS running in the Non-secure world. The following APIs are defined

to enable OS to communicate with NSCE:

API Description
uint32_t tfm_nsce_init(uint32_t

ctx_requested)
Before accessing other NSCE APIs, the Non-
secure OS must call this API to request NSCE to
support multiple contexts (ctx_request is the
number of contexts requested). The return value
determines how many contexts can be
supported.

Uint32_t tfm_nsce_acquire_ctx(uint8_t

group_id, uint8_t thread_id)
Allocates a context to a specific GID, and the API
returns a token if successful, otherwise returns
TFM_NS_CLIENT_INVALID_TOKEN.

Uint32_t

tfm_nsce_release_ctx(uint32_t token)
If an OS thread is destroyed and no other thread
is using the same context, the context can be
released using this API.

Uint32_t tfm_nsce_load_ctx(uint32_t

token, int32_t nsid)
During the OS context switch, the OS uses this
API to load the context for the new thread.

Uint32_t tfm_nsce_save_ctx(uint32_t

token)
During the OS context switch, the OS uses this
API to save the context for the previous thread.

Full information of the APIs can be found at the following website address:

https://tf-m-user-guide.trustedfirmware.org/integration_guide/non-

secure_client_extension_integration_guide.html

It is possible for multiple RTOS threads to share the same Group ID even though they have different

Thread IDs. For example, a communication software stack/library might consist of multiple threads, with

these threads sharing the same software context and crypto keys.

In theory, the interface of NSCE supports up to 256 contexts. Presently though, TF-M only supports one

context at a time, but the use of NSCE is still useful for isolating secure data between contexts. Support

of multiple concurrent contexts in TF-M is on the to do list of future enhancements.

When NSCE is enabled, an RTOS can utilize context management APIs as defined in CMSIS 5

(https://arm-software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html). This

requires a shim layer, which is available at this location: https://git.trustedfirmware.org/TF-M/tf-m-

tests.git/tree/ns_interface/ns_client_ext/tz_shim_layer.c

Note: The current implementation of NSCE is supported in TrustZone based platforms only.

https://tf-m-user-guide.trustedfirmware.org/integration_guide/non-secure_client_extension_integration_guide.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/non-secure_client_extension_integration_guide.html
https://arm-software.github.io/CMSIS_5/Core/html/group__context__trustzone__functions.html
https://git.trustedfirmware.org/TF-M/tf-m-tests.git/tree/ns_interface/ns_client_ext/tz_shim_layer.c
https://git.trustedfirmware.org/TF-M/tf-m-tests.git/tree/ns_interface/ns_client_ext/tz_shim_layer.c

25

4.6.3 Additional information on OS integration
For more information about:

Integrating TF-M with RTOS – See “OS migration to Armv8-M” section in

https://tf-m-user-guide.trustedfirmware.org/integration_guide/os_migration_guide_armv8m.html

4.7 Secure boot support
Secure boot is used to ensure that a program image has not been tampered with. To use secure boot, a

program image needs to be signed with a cryptographic algorithm. When the device boots up and if

secure boot protection is enabled, a trusted bootloader verifies the program image and only executes

the program image if it is verified.

The secure boot is separate from Trusted Firmware-M even though they both run in the Secure state in

a TrustZone enabled system, or in the secure processor in a dual-core system. When the secure

firmware is created, the secure boot program image and Trusted Firmware-M program image are

separate from each other. The separation is needed to allow the TF-M program image to be updated

without affecting the bootloader.

In Trusted Firmware-M, instead of using a new secure boot design, an open-source secure boot project

called MCUboot (www.mcuboot.com, https://github.com/mcu-tools/mcuboot) was integrated. This was

because MCUboot already provided the capabilities needed and was already widely used in the

ecosystem. In June 2021, the MCUboot project joined the Linaro Community Projects division. If

necessary, chip vendors can swap the MCUboot solution for an alternative secure boot product.

TF-M integrates 2 levels of bootloaders, both are optional:

• BL1: This is used when the device has a boot ROM. This boot loader provides the minimal

features required for validation and is used to start up the second-stage bootloader BL2 in the

flash memory. Because the BL1 program code is held in ROM and cannot be modified once the

device is manufactured, the features in BL1 are usually kept to a minimum to reduce the risk of

bugs being in the design. The following webpages provide additional information on BL1:

o BL1 overview: https://tf-m-user-

guide.trustedfirmware.org/design_docs/booting/bl1.html

o BL1 reference code: https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/bl1

• BL2: The is the main bootloader and is based on MCUboot. It provides validation of the

application program image and secure firmware update. The following webpages provide

additional information:

o TF-M Secure boot: https://tf-m-user-

guide.trustedfirmware.org/design_docs/booting/tfm_secure_boot.html

o MCU boot documentation: https://github.com/mcu-tools/mcuboot/tree/main/docs

o TF-M git repository provides a BL2 folder in https://git.trustedfirmware.org/TF-

M/trusted-firmware-m.git/tree/bl2.

During the CMAKE build process, the external MCUboot source code is pulled from the MCUboot github

repository.

https://tf-m-user-guide.trustedfirmware.org/integration_guide/os_migration_guide_armv8m.html
http://www.mcuboot.com/
https://github.com/mcu-tools/mcuboot
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/bl1.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/bl1.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl1
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl1
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/tfm_secure_boot.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/booting/tfm_secure_boot.html
https://github.com/mcu-tools/mcuboot/tree/main/docs
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl2
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl2

26

Not all systems require two stages of bootloaders. Many microcontroller systems that support

embedded flash with flash write protection, have just a single BL2 secure boot stage.

The build process for TF-M also builds the secure boot images (this is optional). In the configuration file

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/config_base.cmake, the

following parameters define whether the bootloader(s) should be part of the build process:

Parameter Purpose

BL1 Specify whether BL1 boot loader is built (ON/OFF)

BL2 Specify whether BL2 boot loader is built (ON/OFF)

When running CMAKE to build TF-M, you can add command line options to override the default settings.

For example:

cmd> cmake -G"Unix Makefiles" -S . -B cmake_build -

DTFM_PLATFORM=arm/mps2/an521 -DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake -

DCMAKE_BUILD_TYPE=Debug -DBL1=OFF -DBL2=ON

To sign image for secure boot, the Python imgtool is used. More examples of this are covered in section

5.5.4.

5 Creating a simple TF-M project

5.1 Building an existing TF-M regression test
The first step when trying out TF-M is to install the required toolchain. This includes the compilation

toolchain (GCC / Arm Compiler / IAR Compiler), Git, Python, etc. You will also need to update the search

path of the system. The full details of what is required can be found here:

https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html

The aforementioned webpage also covers the second step in the process, which is to “clone” the latest

Trusted Firmware-M repository using the Git tool: (an example is shown below)

$> mkdir test
$> cd test
$> git clone https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/

(Note: For production, it might be more suitable to use a stable release rather than the latest version in

the repository).

In the following section, I will cover some of the basic steps. Additional information about building TF-M

programs can be found in the follow webpage:

https://tf-m-user-guide.trustedfirmware.org/building/tfm_build_instruction.html

Assuming we are going to use gcc, and the target is the Arm AN552 FPGA image (an FPGA image for Arm

MPS3 FPGA board with a Cortex-M55 processor inside), we run the compilation using the following

commands (I have assumed that Windows 10 is being used):

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/config/config_base.cmake
https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/
https://tf-m-user-guide.trustedfirmware.org/building/tfm_build_instruction.html

27

$> cd trusted-firmware-m
$> cmake -G"Unix Makefiles" -S . -B cmake_build -DTFM_PLATFORM=arm/mps3/an552
-DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake -DCMAKE_BUILD_TYPE=Debug
-DTEST_S=ON -DTEST_NS=ON
$> cmake --build cmake_build -- install

If a different toolchain is required, this can be achieved by changing the TFM_TOOLCHAIN_FILE

parameter as follows:

Toolchain Parameter/Variable

GCC -DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake

Arm Compiler 6 (armclang) -DTFM_TOOLCHAIN_FILE=toolchain_ARMCLANG.cmake

IAR Compiler -DTFM_TOOLCHAIN_FILE=toolchain_IARARM.cmake

The whole build process can take several minutes. After the compilation is finished, the output signed

program image (binaries) are copied to the trusted-firmware-m\cmake_build\install\outputs. Once

done, follow the instructions in AN552 page (link below) to copy the signed images to the MPS3 storage

and test the generated binary files:

https://tf-m-user-guide.trustedfirmware.org/platform/arm/mps3/an552/README.html

The execution output should show that the system boots up in the bootloader, verifies the program

images, initializes Trusted Firmware-M, switches to the Non-secure world and starts the regression

tests.

By default, the compilation flow enables a range of features and the regression tests in the compiled

program tests those features. If you are using a microcontroller device with limited memory, the

regression tests might not fit. If this happens, you should use the small profile instead to reduce the

memory usage (this will be shown in the next step).

The aforementioned example command used the following parameters to enable the regression tests:

-DTEST_S=ON -DTEST_NS=ON

The parameter:

• TEST_S enables all the secure regression suites supported on the platform.

• TEST_NS enables all the non-secure secure regression suites supported on the platform.

These parameters are used for testing only and should be removed for production.

TF-M also allows users to select/de-select regression test suites individually. For example, crypto, ITS, a

Non-secure test suite or a Secure test suite. This arrangement is very useful if users just want to test a

specific feature, a secure partition or when the platform is resource constrained.

TF-M supports out-of-tree regression test builds (i.e. use of regression tests that are not part of the git

repository). It enables users to integrate out-of-tree extra test suites with TF-M to easily and flexibly

https://tf-m-user-guide.trustedfirmware.org/platform/arm/mps3/an552/README.html

28

perform platform specific/application specific test suites. More information on this subject can be found

in the “Out-of-tree regression test suites” section in the following document:

https://git.trustedfirmware.org/TF-M/tf-m-tests.git/tree/docs/tfm_test_suites_addition.rst

If you need to view the generated messages for each step in the compilations, add --verbose to the build

command (i.e. in the second step). For example:

$> cmake --build cmake_build --verbose -- install

5.2 Creating a TF-M firmware image with the TF-M Profile Small
In this step, I will show you how to create a TF-M firmware image:

• With a TF-M Profile Small (using SFN model), and

• Which does not include the regression tests.

To ensure we do not end up using the old configuration files, we should first remove the old

cmake_build directory (which was automatically generated) and then run the following commands:

$> cd trusted-firmware-m

$> rmdir cmake_build /s (Remove cmake_build for Windows)
or
$> rm -r cmake_build (Remove cmake_build for Linux)

$> cmake -G"Unix Makefiles" -S . -B cmake_build -DTFM_PLATFORM=arm/mps3/an552
 -DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake -DCMAKE_BUILD_TYPE=Debug
 -DTFM_PROFILE=profile_small

$> cmake --build cmake_build -- install

After the compilation is finished, the program image should, as before, be downloaded to the

development board and executed. However, this time the program execution seems to have stopped

after entering the Non-secure world, as shown in the execution message below. This is expected, as we

have removed the regression tests from the build.

[INF] Starting bootloader
[INF] Beginning BL2 provisioning
[WRN] TFM_DUMMY_PROVISIONING is not suitable for production! This device is NOT SECURE
[INF] Swap type: none
[INF] Bootloader chainload address offset: 0x0
[INF] Jumping to the first image slot
[INF] Beginning TF-M provisioning
[WRN] TFM_DUMMY_PROVISIONING is not suitable for production! This device is NOT SECURE

https://git.trustedfirmware.org/TF-M/tf-m-tests.git/tree/docs/tfm_test_suites_addition.rst

29

[Sec Thread] Secure image initializing!
TF-M isolation level is: 0x00000001
Booting TF-M v1.7.0+128ada80d
Creating an empty ITS flash layout.
[INF][Crypto] Provisioning entropy seed... complete.
[DBG][Crypto] Initialising mbed TLS 3.2.1 as PSA Crypto backend library... complete.
Non-Secure system starting...

Because the regression tests were disabled, the Non-secure application has nothing to do – apart from

starting up an RTOS and then entering an “IDLE” state. To ensure that there is a working TF-M image, we

should modify the Non-secure application so that the code calls a Secure function, i.e.

“psa_framework_version()”.

To carry out this modification, we need to locate the Non-secure application code. The “main()”

function of the Non-secure application is part of the TF-M test suite, which is in a separate git repository

as follows:

https://git.trustedfirmware.org/TF-M/tf-m-tests.git

During the build process, the external git repositories (including the TF-M test suite, MCUboot and

mbedTLS) are pulled into the cmake_build directory. You can find them at the following location:

trusted-firmware-m/cmake_build/lib/ext

The test application can be found in the trusted-firmware-m/cmake_build/lib/ext/tfm_test_repo-

src/app, as follows:

• main_ns.c – starts an OS and an application thread “test_app()” (inside test_app.c).

• test_app.c – contains test_app().

We can modify test_app.c to

• Add #include “stdio.h” for printf function

• Add calls to psa_framework_version()

The highlighted text below is the added code for calling the psa_framework_version() function.

/*
 * Copyright (c) 2017-2022, Arm Limited. All rights reserved.
 *
 * SPDX-License-Identifier: BSD-3-Clause
 *
 */

#include "test_app.h"
#include "tfm_log.h"
#include "stdio.h"

extern uint32_t psa_framework_version(void);

https://git.trustedfirmware.org/TF-M/tf-m-tests.git

30

...
/**
 * \brief Services test thread
 *
 */
__attribute__((noreturn))
void test_app(void *argument)
{
 uint32_t v_temp;
 UNUSED_VARIABLE(argument);

 v_temp = psa_framework_version();
 printf ("PSA Framework version = %d\r\n", v_temp);
 …

After the code is edited, we recompile the code by running

$> cmake --build cmake_build -- install

After uploading the test program image to the platform and restarting it, the following output message

should be displayed after the Non-secure software is executed:

[INF] Starting bootloader
[INF] Beginning BL2 provisioning
[WRN] TFM_DUMMY_PROVISIONING is not suitable for production! This device is NOT SECURE
[INF] Swap type: none
[INF] Bootloader chainload address offset: 0x0
[INF] Jumping to the first image slot
[INF] Beginning TF-M provisioning
[WRN] TFM_DUMMY_PROVISIONING is not suitable for production! This device is NOT SECURE
[Sec Thread] Secure image initializing!
TF-M isolation level is: 0x00000001
Booting TF-M v1.7.0+128ada80d
Creating an empty ITS flash layout.
[INF][Crypto] Provisioning entropy seed... complete.
[DBG][Crypto] Initialising mbed TLS 3.2.1 as PSA Crypto backend library... complete.
Non-Secure system starting...
PSA Framework version = 257

For reference, the function prototype of these APIs is as follows:

uint32_t psa_framework_version(void);

uint32_t psa_version(uint32_t sid);

31

Note: The function “psa_version()” is not used in the example because it might not be available for a

minimal configuration. Definition of SID (Service ID) can be found in table 37 of this page: https://tf-m-

user-guide.trustedfirmware.org/integration_guide/services/tfm_secure_partition_addition.html

Tip:
In TrustZone based systems with an OS running in the Non-secure state, the PSA APIs must be called
in OS threads only. So, instead of adding the codes to main() in main_ns.c, it is added to test_app().
Each PSA API goes through a wrapper function called tfm_ns_interface_dispatch(), with this wrapper
function requesting a mutex before calling the entry point. Because the mutex function only works
inside OS threads, the code could fail or get stuck if it is called inside the main() function.

5.3 Customizing crypto options
In many instances there is a need to customize the cryptography functions in the secure firmware. For

example, the TF-M Profile Small does not include asymmetric cryptography support. If an asymmetric

crypto operation is needed, you can either use another TF-M profile (e.g. Medium ARoT-less), or

customize the cryptography options.

In the configuration files for a TF-M Profile Small in the trusted-firmware-m\config\profile directory, the

following default options are defined:

Option Default
state

Note

CRYPTO_ASYM_SIGN_MODULE_ENABLED
(This is defined in config_profile_small.h)

0 When this is 0 (default), the PSA Crypto
asymmetric key signature module is
disabled.
To enable the asymmetric key signature
module, this value must be set to 1.

CRYPTO_ASYM_ENCRYPT_MODULE_ENABLED
(This is defined in config_profile_small.h)

0 When this is 0 (default), the PSA Crypto
asymmetric key encryption module is
disabled.
To enable the asymmetric key encryption
module, this value must be set to 1.

In addition, there is an Attestation configuration which only configures the attestation service and which

has no impact on the crypto service:

Option Default
state

Note

SYMMETRIC_INITIAL_ATTESTATION
(This is defined in profile_small.cmake)

ON By default, symmetric crypto is used for
initial attestation.
To use asymmetric crypto for initial
attestation, this parameter should be set
to OFF.

You can override the default options by creating a custom defined profile file and editing the values.

https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_secure_partition_addition.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_secure_partition_addition.html

32

For more information about configurations and the order of configuration options, please refer to the

following page:

https://tf-m-user-guide.trustedfirmware.org/configuration/build_configuration.html

In addition, you might need to edit the corresponding mbedcrypto configuration file to enable the

required algorithm(s). For the TF-M Profile Small, the configuration file is in this location:

trusted-firmware-m\lib\ext\mbedcrypto\mbedcrypto_config\crypto_config_profile_small.h

The configuration options in this header file are specific to the mbedcrypto software component.

Although the mbedcrypto library is part of the secure firmware, it is independent from the TF-M and

therefore the configuration file is separate.

When CRYPTO_ASYM_SIGN_MODULE_ENABLED is set to 1, the mbedcrypto configuration must support

at least one asymmetric crypto algorithm. One method is to use the same configuration as in the Profile

Medium. To match the same configurations used in the Profile Medium, the following crypto algorithm

macros in the mbedcrypto configuration file need to be set to 1:

• PSA_WANT_ALG_ECDSA

• PSA_WANT_ALG_DETERMINISTIC_ECDSA

• PSA_WANT_ALG_ECDH

• PSA_WANT_ALG_HKDF

• PSA_WANT_KEY_TYPE_ECC_KEY_PAIR

• PSA_WANT_KEY_TYPE_ECC_PUBLIC_KEY

• In addition, at least one of the asymmetric crypto options needs to be set (e.g.

PSA_WANT_ECC_SECP_R1_256)

When CRYPTO_ASYM_ENCRYPT_MODULE_ENABLED is set to 1, the following crypto algorithm macros

need to be set to 1:

• Either PSA_WANT_ALG_RSA_OAEP or PSA_WANT_ALG_RSA_PKCS1V15_CRYPT

• PSA_WANT_KEY_TYPE_RSA_KEY_PAIR

• PSA_WANT_KEY_TYPE_RSA_PUBLIC_KEY

The SYMMETRIC_INITIAL_ATTESTATION parameter only affects the attestation. The choice depends on

the provisioning requirements. For devices with a small memory size, initial attestation based on

symmetric key algorithm is preferred. If asymmetric key algorithm is needed, using the medium ARoT-

less profile would be more straight forward.

Potentially, you might also need to adjust other configuration parameters related to crypto support. For

example:

• CRYPTO_ENGINE_BUF_SIZE

• CRYPTO_CONC_OPER_NUM

• CRYPTO_IOVEC_BUFFER_SIZE

Details of these parameters can be found in this page:

https://tf-m-user-guide.trustedfirmware.org/design_docs/services/tfm_crypto_design.html

https://tf-m-user-guide.trustedfirmware.org/configuration/build_configuration.html
https://tf-m-user-guide.trustedfirmware.org/design_docs/services/tfm_crypto_design.html

33

For a device with limited memory, and when the application does not need to carry out many

cryptography operations, the maximum number of concurrent crypto operations can be reduced; e.g. by

setting CRYPTO_CONC_OPER_NUM to 1.

5.4 Configuring TF-M using Kconfig

5.4.1 Overview
Version 1.7 of TF-M introduced Kconfig support to make it easier for beginners to configure TF-M. This

arrangement allows users to browse the available options through a user interface and to easily adjust

the settings. There are two ways to use Kconfig in TF-M.

5.4.2 Method 1: Launch Kconfig when running CMAKE.
This method combines the Kconfig configuration step with the CMAKE build process. When using this

method, a command line option “-DUSE_KCONFIG_TOOL” is passed to the CMAKE script resulting in the

script launching the Kconfig graphical user interface (GUI) during the CMAKE execution process (Figure

13 refers). After you configure the TF-M options and save the settings, quit Kconfig and leave the CMAKE

script to continue generating the build environment.

Run CMAKE script to
generate build environment.

Start
Run CMAKE script to compile
code and generate program

images.

Launch Kconfig for
configuring TF-M

Configuration files

Kconfig graphical
user interface

End

Figure 13: Running Kconfig as part of the CMAKE build process.

An example command line for running CMAKE script and configuring TF-M using Kconfig GUI is as

follows:

>cd trusted-firmware-m
>cmake -G"Unix Makefiles" -S . -B cmake_build -DTFM_PLATFORM=arm/mps3/an5552 ^
 -DUSE_KCONFIG_TOOL=1 -DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake ^
 -DCMAKE_BUILD_TYPE=Debug

Shortly after the script starts, Kconfig GUI is launched as shown in the following example screen shot:

34

Figure 14: Kconfig graphical user interface.

After adjusting the configuration options, click on “Save” and then quit Kconfig: the build script will

continue, allowing you to compile the secure firmware (e.g. cmake --build cmake_build -- install).

35

5.4.3 Method 2: Launch Kconfig as a separate step before running the CMAKE script.
It is possible to launch Kconfig as a separate step (step 1) and then use CMAKE to generate the build

environment (step 2) and compile the code (step 3). This is shown in Figure 15. This method is more

suitable for test environments where a set of configuration files need to be reused multiple times (e.g.

for regression testing).

Run script to
launch Kconfig

Start

Run CMAKE script to
generate build

environment based on
the configuration files.

Configuration
files

Run CMAKE script
to compile code

and generate
program images.

End

Step 1 Step 2 Step 3

Figure 15: Running Kconfig as a standalone step before running CMAKE.

The process for method 2 is as follows:

Step 1: Launch Kconfig using the script “tools/kconfig/tfm_kconfig.py”.

>cd trusted-firmware-m
Execute one of the following commands:
(1) For text-based user interface
>python3 tools/kconfig/tfm_kconfig.py -k Kconfig -o my_config -u tui
(2) For graphic user interface
>python3 tools/kconfig/tfm_kconfig.py -k Kconfig -o my_config -u gui

After saving the configuration and exiting the Kconfig user interface, the configuration files are created

in a directory (I used “my_config” for the directory name in the above example. You can change that to

another directory name if you prefer).

Step 2: Run CMAKE using the generated configuration as input.

The following shows an example command to run CMAKE with the configuration files as input:

> cmake -G"Unix Makefiles" -S . -B cmake_build -DTFM_PLATFORM=arm/mps3/an552 ^
 -DTFM_EXTRA_CONFIG_PATH=my_config/project_config.cmake ^
 -DPROJECT_CONFIG_HEADER_FILE=my_config/project_config.h ^
 -DTFM_TOOLCHAIN_FILE=toolchain_GNUARM.cmake -DCMAKE_BUILD_TYPE=Debug

Step 3: Compile program code

After generating the build environment, start the compilation (e.g. cmake --build cmake_build – install).

5.4.4 Limitations
At this stage of TF-M version 1.7, there are some restrictions with the Kconfig support. These are:

- Only isolation level 1 is supported.

- The configuration generated does not align with options from the command line, therefore

options like test configuration (e.g. -DTEST_S=ON -DTEST_NS=ON) should not be used.

36

Additional information relating to Kconfig support is available from the following page:

https://tf-m-user-guide.trustedfirmware.org/configuration/kconfig_system.html

5.5 Creating a Non-secure application with a traditional IDE

5.5.1 Overview
After creating a working secure firmware image, many software developers will then work on their

application software projects that run in the Non-secure world. For such software development, it is

usual to use a traditional or cloud-based IDE because those IDE’s offer better debug capabilities.

To create a Non-secure application, software developers need to include the following items in their

Non-secure software project:

- The export library (e.g. s_veneers.o)- which is generated when the Secure firmware is compiled.

- The Non-secure interface codes for TF-M

Note 1: Instead of taking the files directly from https://git.trustedfirmware.org/TF-M/trusted-

firmware-m.git/tree/interface/, the file generated during the building of the secure program

image should be used. This is available in the cmake_build/install/interface directory.

Note 2: A CMSIS-PACK for the TF-M Non-secure interface codes is currently being prepared and

will make it easier to integrate the TF-M interface.

In addition, software developers also need to make sure that:

- The memory layout for their Non-secure project does not conflict with the Secure memory.

- The generated software program image is signed after the Non-secure project is compiled. If it is

not, the secure boot loader will not load the program.

To make the software development easier, many software stacks for IoT applications are available as

CMSIS-PACK: This means they can easily be integrated into software projects when using development

environments like Keil Microcontroller Development Kit (MDK) and Keil Studio.

5.5.2 Integration of the Non-secure interface
Typically, software developers when building their project need to include the following C source files in

cmake_build/install/interface/src. For example, you might see the following files after running the TF-M

build scripts (Note: some of these files might not exist if certain features are not enabled):

cmake_build/install/interface/src/tfm_attest_api.c
cmake_build/install/interface/src/tfm_crypto_api.c
cmake_build/install/interface/src/tfm_its_api.c
cmake_build/install/interface/src/tfm_ps_api.c
cmake_build/install/interface/src/tfm_psa_ns_api.c
cmake_build/install/interface/src/tfm_fwu_api.c
cmake_build/install/interface/src/tfm_platform_api.c

In addition to the above, Software developers should also include:

• The Secure API veneer (cmake_build/install/interface/libs_veneers.o)

https://tf-m-user-guide.trustedfirmware.org/configuration/kconfig_system.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/

37

• The C header files in cmake_build/install/interface/include and the subdirectories to the search

paths for “include” files.

• A modified version of an OS specific wrapper (See https://git.trustedfirmware.org/TF-M/trusted-

firmware-m.git/tree/interface/src/tfm_ns_interface.c.example).

To assist integration with FreeRTOS, a mutex function wrapper is available at this GitHub location:

https://github.com/FreeRTOS/FreeRTOS-Kernel/tree/main/portable/ThirdParty/GCC/ARM_TFM

If needed, a Non-secure software developer is able to examine the available entry points in the export

library (s_veneers.o) by listing the available symbols. For example, if using Arm Compiler 6:

$>fromelf -s s_veneers.o

If using GCC:

$> arm-none-eabi-objdump -x s_veneers.o

The command lists the available symbols in the export library. This can be useful when the software

developer is considering using connection-based services which require psa_connect() and psa_close()

functions.

5.5.3 Memory layout
Software developers creating Non-secure software must ensure that the memory layout settings does

not conflict with the memory usage for the Secure firmware. If you are using an existing port of TF-M,

you can identity the memory layout from the configuration header files in the target folders. For

example:

• For AN552 (one of the FPGA images on the Arm MPS3 FPGA), the header files describing the

memory layout are in the trusted-firmware-m/platform/ext/target/arm/mps3/an552/partition

• For STM32l562, the header files describing the memory layout are in the trusted-firmware-

m/platform/ext/target/stm/stm32l562e_dk/include

Software developers could, if they wish, use the memory layouts of the example Non-secure projects I

have detailed above as a reference and use the same arrangement for their own application projects.

5.5.4 Signing of the generated image
After the program image (binary file) is created, it needs to be signed before being used. In the CMAKE

script in the TF-M project, two Python script files are used. Figure 16 shows the flow of image signing

using those scripts and the corresponding input/output parameters.

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src/tfm_ns_interface.c.example
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/src/tfm_ns_interface.c.example
https://github.com/FreeRTOS/FreeRTOS-Kernel/tree/main/portable/ThirdParty/GCC/ARM_TFM

38

{path}/trusted-firmware-m/bl2/ext/mcuboot/scripts/wrapper/wrapper.py

{path}/trusted-firmware-m/bl2/ext/mcuboot/scripts/assemble.py

--layout {path}/trusted-firmware-m/cmake_build/bl2/ext/mcuboot/CMakeFiles/signing_layout_s.dir/signing_layout_s_ns.o

 -s {path}/trusted-firmware-m/cmake_build/bin/tfm_s.bin

-n {path}/trusted-firmware-m/cmake_build/bin/tfm_ns.bin

Memory layout

Secure binary

Non-secure binary

Script to merge Secure and Non-secure images

-o tfm_s_ns.bin

Combined binary

Script to sign combined image

--layout {path}/trusted-firmware-m/cmake_build/bl2/ext/mcuboot/CMakeFiles/signing_layout_s.dir/signing_layout_s_ns.o

-k {path}/trusted-firmware-m/bl2/ext/mcuboot/root-RSA-3072.pem

Memory layout

Key

{path}/trusted-firmware-m/cmake_build/bl2/ext/mcuboot/tfm_s_ns_signed.bin

{path}/trusted-firmware-m/cmake_build/bl2/ext/mcuboot/tfm_s_ns.bin

-v 1.6.0 --public-key-format full --align 1 --pad --pad-header -H 0x400 -s 1
-L 128 --overwrite-only --measured-boot-record

Other options

Signed combined image

Figure 16: TF-M image signing flow.

The first Python script (assemble.py) is used to merge two binary images into one. The reason for this is

platform specific: The flash programming algorithms in some devices might require both Secure and

Non-secure images to be programmed together.

The second Python script (wrapper.py) is a wrapper for imgtool, a Python module for image signing. This

script takes the same memory layout file and passes the details to imgtool.

Once the software developer has created a new Non-secure program image (in binary format), the

signed image can be regenerated using the aforementioned scripts:

(Assumed using Windows)
python3.10.exe bl2\ext\mcuboot\scripts\assemble.py ^
 --layout
..\..\..\..\cmake_build\bl2\ext\mcuboot\CMakeFiles\signing_layout_s.dir\signing_layout_s_ns.o ^
 -s cmake_build\bin\tfm_s.bin ^
 -n cmake_build\bin\tfm_ns_new.bin ^
 -o tfm_s_ns_new.bin

python3.10.exe bl2\ext\mcuboot\scripts\wrapper\wrapper.py -v 1.6.0 ^
 --layout
..\..\..\..\cmake_build\bl2\ext\mcuboot\CMakeFiles\signing_layout_s.dir\signing_layout_s_ns.o ^
 -k bl2\ext\mcuboot\root-RSA-3072.pem ^
 --public-key-format full --align 1 --pad --pad-header -H 0x400 -s 1 -L 128 --overwrite-only ^
 --measured-boot-record ^
 tfm_s_ns_new.bin ^
 tfm_s_ns_signed_new.bin

39

It is possible to just sign the Non-secure image. Usually this arrangement is used for microcontrollers

where the Secure and Non-secure flash can be independently programmed. An example of using this

arrangement is covered in the next section (section 5.6).

5.6 Example based on AWS MQTT service and TF-M
To make the best use of TF-M, the application codes need to utilize the security APIs provided by TF-M.

An example of this is that the AWS IoT software library now supports PSA APIs and therefore can take

advantage of TF-M. A demonstration of this is posted on Github: https://github.com/MDK-

Packs/TrustZone. This repository provides multiple demos including Authentication (Provisioning) and

MQTT data transfer.

Note: Because currently this demo is using an older version of TF-M the Non-secure interface files are
different from the latest ones in the TF-M repository.

The AWS IoT library uses a C macro called MBEDTLS_TRANSPORT_PSA to enable PSA APIs. When this

macro is set, the library utilizes PSA Crypto and Secure storage APIs.

Unlike the TF-M project in the TF-M repository, the demo projects in https://github.com/MDK-

Packs/TrustZone use precompiled program images for bootloader (See https://github.com/MDK-

Packs/TrustZone/tree/main/bl2) and Secure firmware (See https://github.com/MDK-

Packs/TrustZone/tree/main/tfm). It is assumed that the bootloader and secure firmware are

programmed on the device separately from the Non-secure application program image. As a result, the

Non-secure application image needs to be signed as a separate step. This is carried out in the project

compilation flow automatically using a User Command setting- as shown in Figure 17:

https://github.com/MDK-Packs/TrustZone
https://github.com/MDK-Packs/TrustZone
https://github.com/MDK-Packs/TrustZone
https://github.com/MDK-Packs/TrustZone
https://github.com/MDK-Packs/TrustZone/tree/main/bl2
https://github.com/MDK-Packs/TrustZone/tree/main/bl2
https://github.com/MDK-Packs/TrustZone/tree/main/tfm
https://github.com/MDK-Packs/TrustZone/tree/main/tfm

40

Figure 17: MDK user command option can be used to sign a program image at the end of the

compilation.

The full command for signing the image is as follows:

Board\AVH_MPS3_Corstone-300\sign_image.bat $L@L "0.9.2" 1

(Note: “$L@L” is a built-in symbol in Keil MDK that points to the Linker output file. Additional

information on this can be found at

https://developer.arm.com/documentation/101407/0537/Utilities/Key-Sequence-for-Tool-Parameters)

“sign_image.bat” is a batch file that can be found at https://github.com/MDK-

Packs/TrustZone/blob/main/app/AWS/Board/AVH_MPS3_Corstone-300/sign_image.bat

“sign_image.bat” is a wrapper for imgtool (the same Python module that was mentioned for image

signing in the last section). It has a command syntax of: sign_image.bat <name> <version> <counter>

The input parameters are:

• <name>.hex : hex imaged to be signed

• <version> : Version string (e.g. “0.9.2”)

https://developer.arm.com/documentation/101407/0537/Utilities/Key-Sequence-for-Tool-Parameters
https://github.com/MDK-Packs/TrustZone/blob/main/app/AWS/Board/AVH_MPS3_Corstone-300/sign_image.bat
https://github.com/MDK-Packs/TrustZone/blob/main/app/AWS/Board/AVH_MPS3_Corstone-300/sign_image.bat

41

• <counter> : security counter (e.g. 1)

The outputs are:

• <name>_signed.bin: Signed binary image (confirmed)

• <name>_OTA.bin: Signed binary image for OTA (not confirmed)

• <name>_signed.hex : Signed hex image generated from <name>_signed.bin

After the image is signed, it can then be programmed into the device and tested.

6 Getting your TF-M setup ready for products

6.1 Configuration options
For product development, a number of configuration options might need to be changed. To do this, you

can either:

- edit the configuration files in config subdirectory, or

- override some of them using command line options.

For example, in config/config_base.cmake, you might want to edit the following options:

Options Note

TFM_PXN_ENABLE Privileged eXecute Never (PXN) is a memory attribute in
the MPU and can prevent unprivileged code from running
at privileged level (privilege escalation attacks). This
feature was introduced in Armv8.1-M processors (e.g.
Cortex-M55, Cortex-M85), and is not available in Armv6-M,
Armv7-M and Armv8.0-M.
This feature is relevant to isolation levels 2 and 3, but not
level 1 as it does not require an MPU.

CONFIG_TFM_HALT_ON_CORE_PANIC For debugging: you can set this to ON so that the processor
halts when there is a fatal error. For production, this
option should be set to OFF.

PLATFORM_PSA_ADAC_SECURE_DEBUG When this is set to TRUE, it enables PSA Authenticated
Debug Access Control (ADAC) support in TF-M.

PLATFORM_DEFAULT_xxx A number of options relating to default keys and non-
volatile storage need to be set up. The options are
platform dependent.

Also, in config/cp_config_default.cmake

Options Note

CONFIG_TFM_ENABLE_FP,
CONFIG_TFM_ENABLE_MVE_FP

By default, secure firmware does not use the FPU or
Helium (MVE) because most of the secure code does not
contain floating-point operations. However, if additional
secure libraries are added, and if they require floating-
point support, this should be set to ON.

CONFIG_TFM_ENABLE_MVE Enables the integer portion of Helium (MVE) in secure
firmware.

42

CONFIG_TFM_FLOAT_ABI This specifies the floating-point ABI. If FPU/Helium is not
used, then the default is “soft” (i.e. use software to
emulate floating-point operations). If FPU/Helium is used,
then this should be set to “hard”.

There are additional configuration files which might need to be modified:

Filename Description

tfm_fwu_config.cmake Firmware update configuration

tfm_build_log_config.cmake Configuration of build logs (message output
during build)

6.2 Secure boot keys
By default, the TF-M repository comes with example keys for secure boot(s). For production, those keys

need to be replaced by your own keys.

6.2.1 BL1 bootloader
The BL1 code folder contains a dummy key pair in the following location:

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl1/bl1_2

If a designer adds BL1 bootloader to their design, the dummy key pair should be replaced. This could be

generated using pyhsslms (https://github.com/russhousley/pyhsslms) or similar tools that support LMS

key generation.

To use pyhsslms to generate key pairs:

1) Install pyhsslms Python package. For example:

$> pip install pyhsslms

2) Execute Python and invoke pyhsslms’s genkey function:

$> python3 -c "import pyhsslms; priv_key=pyhsslms.HssLmsPrivateKey.genkey('mykey', levels=1,
lms_type=pyhsslms.lms_sha256_m32_h10, lmots_type=pyhsslms.lmots_sha256_n32_w8)"

This should generate mykey.prv (private key) and mykey.pub (public key).

6.2.2 BL2 bootloader
By default, MCU boot uses RSA-3072 asymmetric crypto. The default key pairs for this crypto in TF-M is

located in the following locations:

• Private key: https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/bl2/ext/mcuboot/root-RSA-3072.pem

• Public key (part of the program code): https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/bl2/ext/mcuboot/keys.c

https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl1/bl1_2
https://github.com/russhousley/pyhsslms
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl2/ext/mcuboot/root-RSA-3072.pem
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl2/ext/mcuboot/root-RSA-3072.pem
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl2/ext/mcuboot/keys.c
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/bl2/ext/mcuboot/keys.c

43

To generate a key pair, you use the following steps (test.pem is the filename and can be changed):

1) Generate private key : imgtool.py keygen -k test.pem -t rsa-3072

2) Generate public key from private key : imgtool.py getpub -k test.pem

The second step outputs a C char array and you can copy and paste this in keys.c to replace the default

key.

6.3 TF-M Built-in Keys
TF-M, in particular the crypto service, provides support for built-in keys. These keys are provisioned in

devices (e.g. microcontrollers) and can be used for crypto operations through the TF-M Crypto services

by entities (e.g. software components) in both the Secure and Non-secure worlds. However, these built-

in keys can only be used via the particular set of key handles associated to them, and are not managed

by applications or by other secure services. Examples of these keys are:

• HUK (Hardware Unique Key) – this is normally used by key derivation functions to generate

other keys.

• IAK (Initial Attestation Key) – this is used during initial attestation.

Further information on the TF-M built-in keys support and related documentation is available at the

following link:

https://tf-m-user-guide.trustedfirmware.org/design_docs/tfm_builtin_keys.html

If the C macro PLATFORM_DEFAULT_CRYPTO_KEYS is defined, then the default key file is used (See

https://git.trustedfirmware.org/TF-M/trusted-firmware-

m.git/tree/interface/include/crypto_keys/tfm_builtin_key_ids.h)

6.4 Default dummy provisioning
By default, the TF-M project is built with dummy keys for provisioning as described in section 6.3. After

changing the default keys, we need to set the TFM_DUMMY_PROVISIONING value in

config/config_default.cmake so that real hardware provisioning can be carried out. Information

appertaining to this is covered in the following page:

https://tf-m-user-guide.trustedfirmware.org/integration_guide/platform_provisioning.html

6.5 Debug vs release
You might notice that the illustrated build command has a build type option of “-

DCMAKE_BUILD_TYPE=Debug”. This is one of the available options, with the TF-M build system

supporting the following build type choices:

• Debug

• RelWithDebInfo (Release with Debug Information)

• Release

• MinSizeRel (Minimum Size Release – this is the default)

Debug symbols are added by default to all build types but can be removed from Release and MinSizeRel

builds by setting TFM_DEBUG_SYMBOLS to OFF. These options are covered in the following webpage:

https://tf-m-user-guide.trustedfirmware.org/design_docs/tfm_builtin_keys.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/include/crypto_keys/tfm_builtin_key_ids.h
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/interface/include/crypto_keys/tfm_builtin_key_ids.h
https://tf-m-user-guide.trustedfirmware.org/integration_guide/platform_provisioning.html

44

https://tf-m-user-guide.trustedfirmware.org/building/tfm_build_instruction.html?#build-type

7 Other useful information

7.1 Porting to new hardware
Guidelines for porting TF-M to new hardware can be found in the following web pages:

https://tf-m-user-

guide.trustedfirmware.org/integration_guide/platform/porting_TFM_to_a_new_hardware.html

https://tf-m-user-guide.trustedfirmware.org/integration_guide/index.html

In addition, you can use an existing port as reference. The following webpages detail the latest

hardware support:

• https://tf-m-user-guide.trustedfirmware.org/platform/index.html

• https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/platform/ext/target

7.2 Extending secure firmware
TF-M allows software developers to include additional partitions for Application Root-of-Trust in their

secure firmware. This is optional; the majority of simple IoT devices do not need custom defined

Application Root-of-Trust. But, in case there is a need to do so, information regarding this can be found

here:

https://tf-m-user-

guide.trustedfirmware.org/integration_guide/services/tfm_secure_partition_addition.html

It is also possible to have custom defined Secure interrupts. This is documented in the following web

page:

https://tf-m-user-guide.trustedfirmware.org/integration_guide/tfm_secure_irq_integration_guide.html

7.3 TF-M Version 1.7
In TF-M version 1.7, there is a number of changes compared to the previous releases. These are:

• Removal of the Library model – The legacy Library model is superseded by the Secure Function

Model (SFN).

• Default configuration is replaced with base configuration: In previous versions, the default

configuration (when no profile is specified) enables all features. From version 1.7, this is

replaced by base configuration and only contains the firmware framework. This means that

software developers can enable features based on their project’s requirements.

• Configuration mechanism. In previous versions, many of the TF-M configurations were

determined by CMAKE variable. From version 1.7, some of these options have moved into C

marcos in a C header file (config_base.h).

• Adding Kconfig as a configuration method.

• Adding a new profile i.e. Medium without Application Root-of-Trust (Medium ARoT-less)

https://tf-m-user-guide.trustedfirmware.org/building/tfm_build_instruction.html?#build-type
https://tf-m-user-guide.trustedfirmware.org/integration_guide/platform/porting_TFM_to_a_new_hardware.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/platform/porting_TFM_to_a_new_hardware.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/index.html
https://tf-m-user-guide.trustedfirmware.org/platform/index.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/platform/ext/target
https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_secure_partition_addition.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/services/tfm_secure_partition_addition.html
https://tf-m-user-guide.trustedfirmware.org/integration_guide/tfm_secure_irq_integration_guide.html

45

TF-M version 1.7 was released in Dec-2022. You can find the release note for version 1.7 at: https://tf-

m-user-guide.trustedfirmware.org/releases/1.7.0.html. For additional information about the TF-M

roadmap, please visit https://developer.trustedfirmware.org/w/tf_m/planning/.

7.4 Working with the Trusted Firmware team
To get regular updates on Trusted Firmware, you can subscribe to the mailing list. Please visit this page

for details: https://www.trustedfirmware.org/contact/

The Trusted Firmware-M team have regular technical meetings. The meeting schedules and agendas are

available through the mailing list. Recordings and slides of previous meetings can be found here:

https://www.trustedfirmware.org/meetings/tf-m-technical-forum/

As in many open-source projects, the Trusted Firmware team always welcome contributors. Please visit

the following webpage for additional information: https://tf-m-user-

guide.trustedfirmware.org/contributing/contributing_process.html

7.5 Additional reading
The following table provides the location of key resources and a range of reference materials which

could be useful:

Document / website

Trusted Firmware-M Getting Started Guide
https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html

Trusted Firmware-M git repository
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/

Armv8-M Architecture Technical Overview (whitepaper)
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-
blog/posts/whitepaper-armv8-m-architecture-technical-overview

Designing Secure IoT Devices with the Arm Platform Security Architecture and Cortex-M33
Author: Trevor Martin
Publisher: Newnes
ISBN: 978-0-12-821469-5

MCUboot home page
https://www.mcuboot.com/

MCUboot github
https://github.com/mcu-tools/mcuboot

MCUboot Walkthrough and Porting Guide
https://interrupt.memfault.com/blog/mcuboot-overview

Imgtool
https://docs.mcuboot.com/imgtool.html

Trusted Firmware-M future plan

https://tf-m-user-guide.trustedfirmware.org/releases/1.7.0.html
https://tf-m-user-guide.trustedfirmware.org/releases/1.7.0.html
https://developer.trustedfirmware.org/w/tf_m/planning/
https://www.trustedfirmware.org/contact/
https://www.trustedfirmware.org/meetings/tf-m-technical-forum/
https://tf-m-user-guide.trustedfirmware.org/contributing/contributing_process.html
https://tf-m-user-guide.trustedfirmware.org/contributing/contributing_process.html
https://tf-m-user-guide.trustedfirmware.org/getting_started/index.html
https://git.trustedfirmware.org/TF-M/trusted-firmware-m.git/tree/
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/whitepaper-armv8-m-architecture-technical-overview
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/whitepaper-armv8-m-architecture-technical-overview
https://www.mcuboot.com/
https://github.com/mcu-tools/mcuboot
https://interrupt.memfault.com/blog/mcuboot-overview
https://docs.mcuboot.com/imgtool.html

46

https://developer.trustedfirmware.org/w/tf_m/planning/

Definitive Guide to Arm Cortex-M23 and Cortex-M33 Processors
Author: Joseph Yiu
Publisher: Newnes
ISBN: 978-0-128207352

https://developer.trustedfirmware.org/w/tf_m/planning/

