
© 2020 Arm Limited (or its affil iates)

Julian Hall

8 December 2020

Introduction to the
Trusted Services

Project

2 © 2020 Arm Limited (or its affil iates)

A new trustedfirmware.org project
• Trusted Services (TS) is a new project under trustedfirmware.org.

• First published to TrustedFirmware git on 26th November 2020.

• Originates from work by the Arm OSS OP-TEE firmware team to implement PSA RoT
services that can run in Secure Partitions.

• Complements existing trustedfirmware.org projects.

TS

3 © 2020 Arm Limited (or its affil iates)

What are Trusted Services?
• A general term for a firmware service that performs security related operations on behalf of clients.

• A trusted service provider runs within a secure processing environment to protect security sensitive
assets from malicious software running outside of the environment.

• On Arm Cortex-A SoCs, a range of secure processing environments are available:
• Secure partitions – managed by an SPM, implemented by:

– A TEE such as OP-TEE
– A dedicated SEL2 component such as Hafnium
– As part of EL3 firmware

• Trusted applications – managed by a TEE
• Secure enclave – a secondary MCU

• Example services:
• Crypto – provides cryptographic operations with a protected key store
• Secure storage – provides protected persistent storage
• fTPM – TPM 2.0 firmware, running as a trusted service
• UEFI Keystore – a protected persistent store for UEFI keys

4 © 2020 Arm Limited (or its affil iates)

Why have a separate Trusted Services project?

• The Trusted Services project provides a home for service related components that may
be integrated and deployed in different processing environments.

• The project is independent of any particular secure processing environment project.
• E.g., Overloading the OP-TEE project with trusted service components would undermine opportunities

for reuse outside of OP-TEE.

• A centralized project creates opportunities for:
• Adopting a common framework with standard conventions and solutions.
• Component and test-case reuse.
• Publishing standard public interfaces.
• Sharing security enhancements.
• Having a common solution for build, testing and exporting to client projects.

• Opens the door for trusted service deployment on any Arm Cortex-A based device using
common core components.

5 © 2020 Arm Limited (or its affil iates)

Project Goals

• Adopt a project structure that makes it easy to reuse components.

• Make service interfaces easy to consume by clients.

• Adopt a robust layered model to allow alternative layer implementations to coexist.

• Support service deployment into different processing environments.

• Encourage testing by making it easy to add and run test cases.

• Support test and debug in a native PC environment to help application developers.

• Reuse external projects without having to maintain a fork.

• Provide an extensible build system that can integrate with Yocto or Buildroot based OS
builds.

6 © 2020 Arm Limited (or its affil iates)

test tools

component-test

service-test

secure-storage

arm-linux

l inux-pc

Project Structure

crypto

opteesp

build tools

external
component

test component

source
component

secure-storage
protocol

crypto protocol

deployments

protocols

tools

environments

external

components

Service interface
definitions used by
clients.

Tools for build and
test.

Defines the set of
components to build
for deployment in a
specific
environment.

A collection of source code
components that may be
reused for different
deployments.

Different environments
into which built images are
deployed.

Components such as
libraries from external
projects.

7 © 2020 Arm Limited (or its affi l iates)

Secure Processing EnvironmentClient Processing Environment

Common Layered Model

Client Service Provider
Service Access Protocol

RPC Caller RPC Endpoint
RPC Protocol

Messaging Layer Messaging LayerReliable Transport

Backend Drivers

8 © 2020 Arm Limited (or its affil iates)

Protocols

• Public interface definitions are referred to as protocols.

• A service access protocol defines:
• The set of operations that forms a service interface
• Per-operation input and output parameters
• Service specific status codes

• An RPC protocol is responsible for:
• Qualifying a remote interface instance
• Qualifying the remote operation to call
• Forwarding serialized input parameters
• Returning serialized output parameters
• Returning generic RPC status

• Protocol definitions are planned to be kept separate from code under the protocols repo. This helps to
simplify external client project dependencies on the TS project.

• The project structure allows for alternative protocol definition and serialization methods. Currently
support:
• Protocol Buffers – language independent interface definition. Convenient for non-C clients.
• Packed-C – extends existing conventions used by SCMI to support variable length parameters.

9 © 2020 Arm Limited (or its affi l iates)

Client Identity

• A robust identifier for a calling client is important for implementing access control at a service interface.

• For a system partitioned into separate security domains, it should not be possible for a malicious client to
fake another client’s identity.

• RPC call requests cross execution level boundaries when a call is made from the client security domain to
the service provider security domain.
• Client identity can comprise multiple parts based on perspectives from different execution levels.

• For example, a call request initiated by a client running in a Linux userspace process and destined for a
service provider running within an SEL0 SP will traverse at least the following execution levels:
• Calling process (EL0) -> Kernel (EL1) -> Secure monitor (EL3) -> SPMC (SEL1) -> Service provider (SEL0)

• Client identity information to be added to a call request by higher privilege components in the call path.
E.g:
• Kernel driver adds UID or SELinux label for the calling process
• Hypervisor/SPMC adds the source partition ID

• A service provider may implement access control policy, using the accumulated client identity as the
subject.

10 © 2020 Arm Limited (or its affil iates)

Currently supported deployments
Descriptive Name Environments Provides Usage

crypto opteesp Crypto primitives with private keystore General platform service

secure-storage opteesp Secure object store General platform service

component-test linux-pc,
arm-linux

Standalone tests for components and
integrations.

Test driven development and
regression testing.

ts-service-test linux-pc,
arm-linux

Service interface level end-to-end tests. Test services from a client
perspective.

ts-demo linux-pc,
arm-linux

Demonstration client application. Example user-space client
application.

libts linux-pc,
arm-linux

Provides a uniform interface for locating and
accessing services. Decouples an
application from any service deployment
details.

Client application
development and service
level testing.

libsp opteesp FFA interface library. Used in SP environments.

11 © 2020 Arm Limited (or its affil iates)

Build conventions

• All builds related to deployments use CMake.

• The unit of reuse for source code is referred to as a component.

• A component.cmake file defines a set of files that can be reused as a unit.

• A CMakeLists.txt file pulls together a set of components and an environment to define an executable or
library than can be built and deployed.

• All CMakeLists.txt files live under the deployments top-level directory.

• A concrete deployment name is defined by:
• <descriptive-name>/<environment>

• Example deployment directory structure:
• deployments

|-- ts-service-test

|-- ts-service-test.cmake

|-- arm-linux

| |-- CMakeLists.txt

|-- linux-pc

|-- CMakeLists.txt

12 © 2020 Arm Limited (or its affil iates)

Test Conventions

• The TS project has adopted CppUtest for running C/C++ test cases.

• Test components are treated exactly the same as any other source components.

• To reflect the intended subject for tests, test components are located at an appropriate
location in the components source tree within a subdirectory called test.

• For example, service level tests for the crypto service live under:
• components/service/crypto/test

• There are currently two test related deployments:
• component-test – component level tests. Normally built and run as a native PC executable
• ts-service-test – service interface level tests. Either run as a native PC executable or cross compiled to

test real service deployments.

• Adding new tests and running them is extremely easy.
• Adopting a test driven development approach for the majority of components is painless and is

warmly encouraged.

13 © 2020 Arm Limited (or its affil iates)

Supporting development in a native PC environment

• By their nature, debugging code that runs in a secure processing environment can be
tricky.

• As a rule, if a component can be built, run and tested in a native PC environment, it
should be.

• Strict conformance to the layered model and the component based organization helps a
lot with this.

• Two deployments for test are maintained:
• component-test
• ts-service-test

• Both may be built for the linux-pc environment and run from a Linux command prompt.

• Test and debug in the target environment is obviously important but it ’s not the only
option.

14 © 2020 Arm Limited (or its affil iates)

Find out more

• Project repo: https://review.trustedfirmware.org/admin/repos/TS/trusted-services

• Docs on readthedocs.org – coming soon (docs can already be built from project repo)

• Contact:
• julian.hall@arm.com
• miklos.balint@arm.com
• gyorgy.szing@arm.com

© 2020 Arm Limited (or its affil iates)

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद
شكرًا

ধন্যবাদ
תודה

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2020 Arm Limited (or its affil iates)

