Hafnium – VHE Support

Enabling S-EL0 Partitions on ARMv8.4+

Raghu K
Mayur G
Agenda

• Requirement
• FF-A S-EL0 Partitions as a solution
• Explore S-EL0 partitions solution space
• Proof-of-concept status
• Takeaways
Requirements

• Requirements (Driven by Data Center environments)
 • Minimize code in Secure World
 • Better security - lower attack surface
 • RAS, StMM, Secure Storage, TPM (not always) are typical use cases
 • No known use cases today for DRM, Global Platform API’s, RPMB etc
 • Minimize cycle stealing from Normal World
 • Extremely sensitive to jitter
 • No scheduler in Secure World
 • Secure Interrupt handling required, but steals cycles
 • Ideally, Normal World voluntarily provides secure world cycles
 • Upstream with long term support
 • Standards based solution only (FF-A)
 • Portable between Pre-ARMv8.4 and ARMv8.4+ Platforms (Re-usable solutions)
FF-A S-EL0 Partitions

- FF-A S-EL0 Partitions is simplest tool sufficient to meet requirements
 - Avoids *fully featured* Trusted OS’es – less code \sim less jitter, less code \sim better security
 - Most Secure World code isolated in lowest privilege level – Better Security
 - Simple Interrupt Handling Models in EL0
 - Re-usable Pre-ARMv8.4 and Post-ARMv8.4 (EL0 only code)
S-EL0 Partitions Solution Space

- Trusted OS only solution (No S-EL2)
- SPMC + SPMD in EL3
- Hafnium + Trusted OSs
- Hafnium + S-EL1 Shim + S-EL0 partition
- Hafnium + VHE
Trusted OS (No S-EL2)

- No need for a traditional Trusted OS
- Large(er) attack surface
 - No known use case for DRM, Global platform API’s etc.
- FF-A support limited and retrofitted
- Don’t want to be tied to a Trusted OS
 - Not (entirely) ARM standard’s based
 - (May) Require Trusted OS specific drivers
- Designed with mobile devices in mind
 - Does it scale to 100’s of cores?
 - Can we influence design?
 - Can we make it work on a highly configurable system without recompile?

Source: FF-A Spec
SPMC + SPMD in EL3

- Theoretically, this would be ideal solution
 - Assumption - We will put bare bones SPMD & SPMC required for SP’s to work
- However:
 - Not ARM’s main enablement model
 - No plan to support multiple partitions in this model
 - Support for StMM only
 - Not ideal considering ARM CCA

Source: FF-A Spec
Hafnium + Trusted OSs

- All reasons for not using Trusted OSs
- Running firmware in S-EL1 is not portable between Pre-ARMv8.4 and Post-ARMv8.4 platforms
- Don’t really need Virtualization for currently know use cases
 - Don’t need to run multiple Trusted OSs
 - Avoid virtualization over head
 - More expensive translation table walks (2-stages, 16 memory accesses on a TLB miss)
 - Large context to be switched (EL0 + EL1 registers)
 - Lower jitter from secure world code

Source: FF-A Spec
Hafnium + S-EL1 Shim + S-EL0 Partition

- Virtualization overheads described previously
- S-EL1 partition treated as S-EL0 partition for interrupt handling, scheduling models etc. - not ideal
- Otherwise acceptable solution architecturally
 - SPMC only needs to support S-EL1 partitions
 - However, will implementation be clean?
 - Should Shim be part of hafnium or S-EL0 partition?
 - Hafnium – Need code to recognize such partitions and support it – cannot treat as vanilla S-EL1 partition
 - S-EL0 – Needs to be built differently for Pre-v8.4 or Post-v8.4
- Who handles FF-A memory management transactions?
 - S-EL1 shim – Shim bloat
 - S-EL0 – Need to ask shim to map/unmap memory in stage-1, S-EL0 now aware of existence of S-EL1 shim.
What is VHE (Virtualization Host Extensions)?

- Supports running unmodified OSs in EL2, without using EL1
- Better virtualization performance

Source: [Learn the architecture - VHE](#)
Linux/KVM - VHE

KVM/ARM Split-Mode

What if we could do this?

Source: To EL2 and Beyond
Hafnium + VHE

• Explicit support in FF-A spec for VHE
• Built with FF-A in mind (mostly)
• Better model considering ARMv9 changes
• Avoid virtualization overhead
• No legacy (not much legacy)
 • Lower attack surface
 • Fresh start – Ability to influence scalability issues for large systems from ground up
• Flexible - Can use both S-EL0 and S-EL1 SP if needed
• How is this different than a Trusted OS?
 • It is not – VHE turns hafnium into an FF-A only Trusted OS with nothing else!
 • It is also a hypervisor, if/when needed.

Source: FF-A Spec
Hafnium + VHE – The Bad

- Maintenance and support for S-EL0 partitions and tests.
- Lower interrupt handling efficiency relative to S-EL1 partitions
 - Due to supported interrupt models by FF-A (by design)
- Even with S-EL0 support, not ideal situation code wise
 - Increased code size - Initial support will likely have both S-EL1 and S-EL0 support even though we may not need S-EL1
 - Hope to get to a world where hafnium can be compiled with support for only S-EL0 partitions
<table>
<thead>
<tr>
<th>Solution vs Requirements</th>
<th>Minimize Secure World Code</th>
<th>Minimize Cycle Stealing, Jitter</th>
<th>Upstream + LTS</th>
<th>Standard Based (FF-A)</th>
<th>S-EL0/1 FW Portable between Pre v8.4 and Post v8.4</th>
<th>Practical Issues</th>
</tr>
</thead>
</table>
| Trusted OS (No-SEL2) | • Larger attack surface relative to a S-EL0 solutions
• No known use case for fully featured Trusted OS | • Meets/Can meet requirements | • FF-A support limited and retrofitted currently | • Meets/Can meet requirements | • Meets/Can meet requirements | • TOS Designed with mobile devices in mind.
• Lots of legacy and potentially more effort to make it scale to servers. |
| SPMD + SPMC in EL3 | • Meets/Can meet requirements | • Meets/Can meet requirements | • Limited support expected (single partition, StMM only) | • Meets/Can meet requirements | • Meets/Can meet requirements | • Not a great solution considering ARMv9. |
| Hafnium + Trusted OSs | • Larger attack surface in S-EL1 relative to a S-EL0 solutions
• No known use case for fully featured Trusted OS | • Virtualization over head – Larger context switches, penalty on TLB misses etc | • Meets/Can meet requirements | • Meets/Can meet requirements | • Running firmware in S-EL1 is not portable and binary compatible between Pre v8.4 and Post v8.4 | • TOS designed with mobile devices in mind.
• Lots of legacy and potentially more effort to make it scale to servers. |
| Hafnium + S-EL1 Shim + S-EL0 partition | • Meets/Can meet requirements | • Virtualization over head – Larger context switches, penalty on TLB misses etc | • Limited support expected currently | • Meets/Can meet requirements | • S-EL0 partitions not portable and binary compatible between Pre v8.4 and Post v8.4 platforms | • Possibility of ending up with heavy shim and higher maintenance overhead |
| Hafnium + VHE | • Meets/Can meet requirements | • Meets/Can meet requirements | • Meets/Can meet requirements (assuming patches merge) | • Meets/Can meet requirements | • Meets/Can meet requirements | • Maintenance/support required
• Interrupt handling efficiency may be lower for S-EL0 partition vs S-EL1 |
POC – Status, Opens

- **~40 patches** – includes changes to hafnium and tests
- **Testing**
 - Tested on Qemu (EL0 partitions)
 - Tested on FVP (EL0 and S-EL0 partitions)
 - ~75 EL1 VM test cases ported to EL0 including memory management, messaging, interrupts etc.
 - Existing S-EL1 test infrastructure leveraged to run basic S-EL0 tests on FVP
- **Commits labeled with “VHE” for easy revert, Feature under build flag**
- **Opens**
 - EL0 partition mapped RWX, so disable WXN – Tooling issue, to be fixed soon
 - Context switch – Not lightweight yet, switches EL1 state
 - Secure Interrupt handling support
 - Test code duplication – clean up
 - Can we do a hafnium build with purely S-EL0 support? Reduce attack surface even further!
 - PSCI interactions?
 - New issues that come up...
Takeaways

• Call to action
 • Encourage other ARM vendors to use S-EL0 partitions, if you don’t require virtualization in Secure World
 • Review and Merge Patches
 • Support/Run Trusted Services as Hafnium S-EL0 partitions
• Thanks
 • NVIDIA – Mayur G
 • ARM – Achin G, Olivier D
INTENTIONAL BLANK SLIDE
Trusted OS (No S-EL2) – Backup

Optee Feature list

Source: Isolation using virtualization in the secure world
Hafnium + Secure OSs

Source: Learn the architecture - Secure Virtualization