
© 2022 Arm

Boyan Karatotev (boyan.karatotev@arm.com)
09.03.2023

Errata implementation 
framework



© 2022 Arm

Motivation



3 © 2022 Arm

1. Implementing an errata today is verbose
Majority set a bit at reset

a) b)

c)

+ make rule
+ docs mention



4 © 2022 Arm

2. The errata ABI

1 more place to edit

Information again redundant

But not accessible



5 © 2022 Arm

All the useful code

The rest is boilerplate

And very annoying to get past review



6 © 2022 Arm

Of course, some are more involved

Longer workaround sequence

More involved rev check

not applied at reset



7 © 2022 Arm

Practically all errata can be pigeonholed to this template

With small provisions to account for variations



8 © 2022 Arm

Proposal – Aarch64 erratum implementation

workaround_reset_{start, end} - wrapper of erratum workaround function
workaround_runtime_{start, end} - same but workaround manually applied
sysreg_bit_set - reads back and asserts bit set when DEBUG=1
check_erratum_{ls, hs, range} - checker helper
A runtime

+ make rule
+ docs mention



9 © 2022 Arm

The runtime

workaround_*_start registers an erratum entry
• In per-cpu errata_entries section (like cpu_ops)

cpu_reset_func applies selected ones from the list
• Special cpu behaviour can happen after

errata_report_shim does reporting when DEBUG=1
• Common C function for all CPUs iterates the list



10 © 2022 Arm

This covers the majority of cases
Each macro can be incrementally unraveled to the old method for particularly nasty errata



11 © 2022 Arm

The Procedure Call Standard
Some of the cpu operations must obey the PCS

=> obey the PCS throughout

Based on the following (simplified) interpretation

Reg Use

r0 - r15 Scratch registers. Anyone can use at any time

r16, r17 Avoid using. Used by the linker. Any branch (with a relocation) may corrupt it

r18 Avoid using. Scratch, but may be used by the platform for inter procedure call state. Is this us?

r19 - r28 Caller saved

r29, r30 FP, LR



12 © 2022 Arm

Mandated register assignments

function register treatment

Any BL r0-r4 May clobber

Workaround implementation r0-r7 May clobber

r0, r5 Parameter to implementation - cpu_rev_var

Erratum checker function r0-r4 May clobber

All other r8 - r30 Treat as callee saved

to avoid having to do register management
• Also will simplify implementation

Subset of the full PCS
• To eliminate the problem

Runtime has similar assignments, documented in code



13 © 2022 Arm

Aarch32

Implementation stays the same

Only registered to the framework for debug and ABI reporting

Removes some redundancy but little benefit to do fully



© 2022 Arm

The implementation

Runtime part



15 © 2022 Arm

Cost – workaround/check functions

Check function identical

Workaround function – practically identical
• isb moved to reset_func
• extra mov for compatibility
• ASSERT when DEBUG=1 (gone on release builds)



16 © 2022 Arm

Cost – errata_entries list

Per-cpu list

24 bytes per entry, 1 entry per erratum
• some overlap with errata ABI. Designed to be reused
• Minimal information to enable runtime and ABI reporting



17 © 2022 Arm

Cost – reset_func
Fixed size of 19 instructions (76 bytes)
• Previously 5 fixed + 2 per erratum

Loop with 8 instructions per erratum
• Runs even if disabled (previously compiled out)
• Previously only 2

Space saving when > 7 errata per cpu

disabled errata are not left out of the list due to the errata ABI



18 © 2022 Arm

Cost – errata reporting

A debug feature. Compiled out on release builds
• Optimality superseded by ease of use

Common print function in C
• Around 250 instructions

Per-cpu shim
• 5 instructions



© 2022 Arm

Going forward



20 © 2022 Arm

The migration
Old and new style interoperable
• old is inaccessible to framework

Migrate every aarch64 cpu - 3 patches

Fill-in every aarch32 cpu - 1 patch

Converge with errata ABI

Gradually submit to LTS



21 © 2022 Arm

Aarch64 correctness
Patch 1 – reorder only
• To enforce reporting and binary search requirements

Patch 2 – remove boilerplate and register to framework
• Retain git blame of actual workaround

Patch 3 – move to bit setting helpers
• Readability and consistency benefit
• Strictly speaking optional

Script to verify identical binary result
• Within established tolerances eg. missing isb

Manual debugger run
• a few will need genuine refactors
• i.e. the usual errata testing process



22 © 2022 Arm

Correctness contd.

Open question - build workarounds for CI runs
• no elegant solution was apparent
• Only done for Juno (hard-coded)

Add asserts – location open question
• Currently sysreg_bit_set reads the bit back
• Assert workaround ran? How?
• Assert get_cpu_var ran? How?

• Aarch32 avoids correctness since no refactoring there



23 © 2022 Arm

Downstream errata

Please submit upstream
• We will do migration work for each CPU

Changes easy to implement
• But will assist

Platform errata unaffected, but inaccessible to framework and ABI



24 © 2022 Arm

LTS

Patches can be submitted to LTS

LTS identical to master, no changes required
• For errata, at least



25 © 2022 Arm

Errata ABI convergence

cleanup

Merge framework

Merge ABI

Convert cpus



26 © 2022 Arm

Code
https://review.trustedfirmware.org/q/topic:%22bk%252Ferrata_refactor%22+

https://review.trustedfirmware.org/q/topic:%22bk%252Ferrata_refactor%22+


© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות


