
© 2024 Arm

Harrison Mutai and Manish Pandey
22 February 2023

Firmware Handoff on
FVP

2 © 2024 Arm

Punch-Cards and Bootstraps
• Early programming involved using patch-

cables or toggle switches.
• Someone proposed creating a small

program capable of loading larger
programs stored on punched cards or
paper tape.

• Like lifting oneself by bootstraps, it
initiated the system.

• Bootloaders have evolved to handle the
increasing complexity of modern
computing.

NASA, Public domain, via Wikimedia Commons

3 © 2024 Arm

Contents

• Objectives
• Core Concepts

Firmware Handoff Framework

BL1 to BL2

BL2 to BL31

Next steps

4 © 2024 Arm

Firmware Handoff Technical Overview
Objectives

Standardizing information passing between boot stages
• Well defined and scalable data-structure where information propagated as the system boots.
• Standardizing usage of scratch registers (i.e. x0-x3) at handoff boundaries

Standard aims to satisfy requirements from different BL33 solutions:
• Linux (LinuxBoot)
• Xen
• EDK2
• *Partners with closed source BL33 FW
• U-boot
• Coreboot – it’s not used as BL33 yet, some partners plan to in the future.

5 © 2024 Arm

Firmware Handoff Technical Overview
Core Concepts

Spec introduces concept of a Transfer List
(TL) and Transfer Entry (TE)
Any stage in the boot process can
produce information that is consumed by
later boot stages
TL resides in contiguous physical address
space
Any information produced by a firmware
stage must be encapsulated by a TE.
TE cannot be a pointer to a separate
memory location Figure 1: Transfer list example layout [1]

6 © 2024 Arm

Firmware Handoff Technical Overview
Transfer List Requirements

TL composed of header, followed by
sequence of TE’s
TL header specifies:
• Signature
• Checksum
• Version
• Header Size
• Alignment (maximum allowed by the TL)
• Maximum allowable size
• Size of the entire TL in bytes

TL and TE headers must be 8-byte
aligned.

Figure 1: Transfer list example layout [1]

7 © 2024 Arm

Firmware Handoff Technical Overview
Transfer Entry Requirements

TE’s start with an entry header followed
by a data section.
TE header contains:
• Unique tag to identify contents
• Header size
• Exact size of data contents

TE’s can be added or removed at any
stage.
Tag examples: FDT, HOB block, HOB list,
ACPI table.
Tags must be allocated in specification
before use! Figure 1: Transfer list example layout [1]

8 © 2024 Arm

Firmware Handoff Technical Overview
Tag Allocation

New tag ID allocated by submitting a PR to GitHub repository:
https://github.com/FirmwareHandoff/firmware_handoff
There is a generic range applicable to all projects.
Spec allows IMPDEF tags to be added in separate range:
• Encouraged to group tags in logical clusters at 16- or 256-byte boundaries (i.e. tags related to

firmware project or chipset).
• Trusted Firmware related projects have their own range.
• The {0xff_f000, . . . , 0xff_ffff} range is reserved for non-standardized use, don’t need to raise a PR

(strongly discouraged except for local experiments!)

Tag should have a simple layout representable by a C structure.

https://github.com/FirmwareHandoff/firmware_handoff

9 © 2024 Arm

Firmware Handoff Technical Overview
Register Convention (Aarch64)

Register Contents

x0 Base address of FDT if it exists in TL, otherwise 0.

x1

X1 is divided into the following fields:

• X1[23:0]: set to the TL signature (0x4a0f_b10b)
• X1[31:24]: version of register convention
• X1[63:32]: reserved, must be zero.

x2 Reserved, must be zero.

x3 TL Base Address

10 © 2024 Arm

Firmware Handoff Technical Overview
Register Convention (Aarch32)

Register Contents

r0 Reserved, must be zero.

r1

R1 is divided into the following fields:

• R1[23:0]: set to the TL signature (4a0f_b10b)
• R1[31:24]: version of the register convention used.

r2 Base address of FDT if it exists in TL, otherwise 0.

r3 TL Base Address

11 © 2024 Arm

Which boundaries are we standardizing?

Normal
World OS

handoff out-of-scope

handoff being standardized by Arm
AP Boot

Rom
BL1

Trusted
Boot

Firmware
BL2

TOS/SPM*

BL32

RMM

Runtime
Firmware

BL31

Normal
World FW

BL33

12 © 2024 Arm

BL1 to BL2
Overview of Changes

Firmware Configuration (FW_CONFIG) contains
load info for other configuration files
• BL2 uses this to access the Trusted Boot Firmware

Configuration (TB_FW_CONFIG)
• TB_FW_CONFIG is a device tree containing

firmware settings i.e. io policies, Mbed-TLS heap
info

SRAM layout provides BL2 with read-write
memory it can allocate to its memory map in
Trusted SRAM

BL1

BL2AP Boot
Rom

Trusted
Boot

Firmware

Register Contents

x0 FW_CONFIG

x1 SRAM Layout
x2 0

x3 0

13 © 2024 Arm

BL1 to BL2
Overview of Changes

Re-arrange memory map
• Memory region accessible to both stages
• Ensure TL won’t be reclaimed during image

loading

Relocate data structures shared
between BL1 and BL2
• Trusted SRAM Memory layout #36
• Trusted Board Firmware configuration #37

Do we still need the firmware
configuration tree if all device trees
reside in a TL?
https://review.trustedfirmware.org/c/T
F-A/trusted-firmware-a/+/26638

0x04040000 +----------+

 | BL1 (rw) |
 |----------|

 | BL2 |

 |----------|
 | | +-----> +------------+

 | | | | |
 | | | +------------+

 | | | | TB Config |

0x04006000 +----------+ -------+ | |
 | TL | +------------+

0x04001000 +----------+ -------+ | Mem Layout |

 | Shared | | +------------+
0x04000000 +----------+ | | Header |

 +-----> +------------+

Figure 2: FVP Trusted SRAM Layout

BL1

BL2

https://github.com/FirmwareHandoff/firmware_handoff/pull/36
https://github.com/FirmwareHandoff/firmware_handoff/pull/37
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/26638
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/26638

14 © 2024 Arm

BL2 to BL31
Overview of Changes

x0 contains linked
list of executable
image info
• Only needs

information on how
to execute them

• i.e. state of general-
purpose registers, PC,
and SPSR

• entry_point_info_t
HW_CONFIG is a
copy of device tree
passed to BL33
SOC_FW_CONFIG is
a subset of the
HW_CONFIG

BL1

BL2

Register Contents

x0 Parameters from
B2 (bl_params_t)

x1 SOC_FW_CONFIG

x2 HW_CONFIG

x3 0

Trusted
Boot

Firmware
BL2

TOS/SPM*

BL32

RMM

Runtime
Firmware

BL31

Normal
World FW

BL33

15 © 2024 Arm

BL2 to BL31
Overview of Changes

Pass executable image info directly to BL31
instead of linked list:
• Create new TE to encapsulate an

entry_point_info structure.
• Multiple TE’s can have the same tag ID to

support multiple executables.
• Distinguish images using the attributes field in

the structure header (param_header).
• XFERLIST_EXEC_IMG_EP_INFO64 [PR - #31]

SOC_FW_CONFIG currently unused, no
need to currently support it.
• Coud we conditionally compile it from the

HW_CONFIG?
Pass copy of the hardware description
device tree also passed to BL31 as a TE
using the standard FDT entry

Register Contents
x0 FDT Address
x1 TL Metadata
x2 0
x3 TL Base Address

https://github.com/FirmwareHandoff/firmware_handoff/pull/31

16 © 2024 Arm

Next Steps
Testing BL2-BL31 interface with four worlds
Investigating BL31 and BL32 (TOS || SPM)
Investigating BL31 and RMM boundary, determining whether any work is required
Testing entire boot flow in TF-A + EDK2/U-Boot, and any other BL33 solutions
Extending support to other Arm platforms and making it the default choice for FVP…
Supporting partner adoption
Support for TL library in other firmware projects
• OP-TEE, u-boot, edk-II, Hafnium, etc.
• Hosting place for the library?

17 © 2024 Arm

References
1. https://github.com/FirmwareHandoff/firmware_handoff/releases/download/v0.9/firm

ware_handoff.pdf
2. https://static.linaro.org/connect/sfo17/Presentations/SFO17-

310%20Dynamic%20secure%20firmware%20configuration%20v1.0.pdf
3. https://learn.adafruit.com/bootloader-basics/a-brief-history-of-bootloading

https://github.com/FirmwareHandoff/firmware_handoff/releases/download/v0.9/firmware_handoff.pdf
https://github.com/FirmwareHandoff/firmware_handoff/releases/download/v0.9/firmware_handoff.pdf
https://static.linaro.org/connect/sfo17/Presentations/SFO17-310%20Dynamic%20secure%20firmware%20configuration%20v1.0.pdf
https://static.linaro.org/connect/sfo17/Presentations/SFO17-310%20Dynamic%20secure%20firmware%20configuration%20v1.0.pdf
https://learn.adafruit.com/bootloader-basics/a-brief-history-of-bootloading

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
ध"यवाद

Kiitos
ارًكش

ধন#বাদ
הדות

ధన#$ాదమ(ల*
© 2024 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm

20 © 2024 Arm

The Firmware Configuration Framework (FCONF)[9] is a way to offer more flexibility in the firmware. It is used to provide most of the platform-specific
data that were previously hard coded inside the firmware. This framework uses device tree (one or multiple) that are passed to the firmware during
load processing. BL2 uses it to describe the chain of trust and the images list to be loaded.

Thanks to device tree usage, the configuration becomes dynamic at boot time. The current implementation uses the following device tree as
framework entry:
• FW_CONFIG - The firmware configuration file. Hold properties shared across all BLx images. An example is the dtb-registry node, which contains

the information about other binaries configuration (load-address, size, image_id).
• HW_CONFIG - The hardware configuration file. Can be shared by all Boot Loader stages and also by the Normal World Rich OS.
• TB_FW_CONFIG - Trusted Boot Firmware configuration file. Shared between BL1 and BL2.
• SOC_FW_CONFIG - SoC Firmware configuration file. Used by BL31.
• TOS_FW_CONFIG - Trusted OS Firmware configuration file. Used by Trusted OS (BL32).
• NT_FW_CONFIG - Non Trusted Firmware configuration file. Used by Non-trusted firmware (BL33).

21 © 2024 Arm

SPMC Manifest
SPMC manifest contains following info
oAttributes (spmc_id, versions, exec state, load_address, entry_point, binary_size)
oHypervisor (related with VMs)
oCPUs
oMemory

• Can we divide this manifest in two parts? One consumed by SPMD and the other by
SPMC.

• The one passed to SPMC can be added as a TE to be passed at BL31 -> BL32 interface.
• For the attributes part we can use XFERLIST_DT_SPMC_MANIFEST
• The simpler solution is to keep everything as part of XFERLIST_DT_SPMC_MANIFEST

