+

Chris Reed
Oct 2021

+

+ © 2021 Arm + + + + A + + + + 4 +

Agenda

2

Introduction
Features and roadmap

Getting started
- Probes and targets
- Installing target support
- Configuration
« Programming memory

Debugging: gdb and VSCode
Q&A

© 2021 Arm

arm

Introduction

3

pyOCD == Python On Chip Debugger
https://pyocd.io/

© 2021 Arm

Open source: https://github.com/pyocd/pyOCD

Apache 2.0 license

Distributed as a Python package via PyPI
- Install via pip/pipx

* General debug

 Cland test

* Manufacturing, provisioning
 Bespoke debug scripts, tools, utilities
e Security research

 SoC and board bring-up

Originally created by the Mbed team within Arm

Now an independent project

arm

https://github.com/pyocd/pyOCD
https://pyocd.io/

Why pyOCD?

What makes it different and worth using? (Especially compared to OpenOCD.)

Key distinctions

1. Bestfor Arm
- Integrates with Arm ecosystem and CMSIS.

2. Focus on ease of use
- But still retaining configurability and
extensibility.

3. Python
- Easy to integrate for Cl, test, bespoke debug
tools, etc.

4. Permissive open source license (Apache 2.0)

4 © 2021 Arm

Major features

* CMSIS Device Family Pack support
* Standard CMSIS flash algo support

e CoreSight discovery
« No hard-coded config (generally)

e Easy to use Python API

* RTOS awareness

« SWO/SWV

* ADIv6 support (e.g., Cortex-M55)
* TCP debug probe server/client

* SVD register access via commands

* Plug-ins

arm

Roadmap
Where pyOCD is headed next.

Short term/in progress:

CMSIS DFP debug sequences

Better TrustZone-M support (work around gdb)
Reusable debug controller class

Event Recorder, aka CMSIS View

Segger RTT

Built-in debug authentication (via SDM APl and
PSA ADAC)

© 2021 Arm

Longer term:

Microsoft Debug Adapter Protocol
Cortex-A

IO expansion (12C, SPI, GPIO)

Trace via ETB/MTB and TPIU
Board-level config (QSPI algos, etc.)

Support for Fast Models
More extensibility

Long term goal: Full debug capability?

arm

https://microsoft.github.io/debug-adapter-protocol/

© 2021 Arm

pyOCD command line tool

the pyocd command line tool with these subcommands:

The primary interface to pyOCD is through

list

Display available debug probes, targets, boards, plugins.

gdbserver, gdb Startgdbserver for debugging.

pack

load, flash
erase
commander,
json

server

7 © 2021 Arm

cmd

Manage CMSIS Device Family Packs that provide target support.

Program files into memory, RAM and flash.
Erase chip or range of sectors.

REPL for interactively investigating devices.
Similar to 1ist but JSON output.

Serve debug probe via TCP/IP.

N

Y

<~ z < =< <

arm

pyOCD needs to know...

Subcommands that control the MCU have a set of common arguments.

On-board debug probe

1. What MCU to debug?

—> Target 2. How to talk to it?

— Debug probe
(Implicitly, which MCU to debug.)

8 © 2021 Arm Standalone debug probe a r m

Targets

e Target: the MCU being debugged
* Target type: the MCU family and part
number

e Target types combine:
« Memory map
- Flash programming algorithms
- Special debug logic
- Other info

e 70+ built-in target types
* Most other Cortex-M devices supported via
CMSIS Device Family Packs

9 © 2021 Arm

Debug probes

10

The interface that drives SWD or JTAG to the MCU

Two flavours:

On-board probes

- Ex: DAPLink on Arm Musca boards

- Ex: STLink on STMicro Nucleo boards
Standalone probes

- Ex: Arm ULINKplus

- Ex: Segger J-Link

Supported probe types:

CMSIS-DAP v1 (HID) and v2 (WinUSB)

STLinkV2/V3

J-Link

Raspberry Pi RP2040 picoprobe

PE Micro

TCP/IP remote probe server (pyocd proprietary protocol)

© 2021 Arm

These are all standalone debug probes...

0 0PEPPEEEO® M wssss | ssassas |

Selecting the debug probe

Every debug probe has a unique ID.

- View by running pyocd list.

(%]
1
p
3
4
5
6
7

 Three methods to select the probe:

11

1.

2.

3.

Only one probe is connected: pyOCD selects it automatically.

Unique ID

00000080317099a85fdf51158d5dfcaa6102ef474c504355
500700001c161cd400000000000000000000000097969902
5005000019150e4b0000000000000000VVVVRBO7969902
001700343137510D39383538
02400b0129164e450044001270600071301000097969900
02270b0341114e450014300ac207002392d1000097969900
002100075553500E20393256

960177309

Multiple probes are connected: pyOCD asks you to select a probe before continuing.

Explicitly select with —u UID / ——uid=UID / —--probe=UID

—~ Can restrict probe type with plugin—-name: prefix on UID.

© 2021 Arm

arm

Specifying the target type

Each target type has a name
- e.g., “keaf”, “stm321475xg”, “nrf5340 xxaa”, “k32I3a60vpjla”
« Often the full part number, except built-in targets tend to have short names

 Many on-board debug probes know their connected target type.
- DAPLink firmware and STLinkV2/V3 support this

* For standalone probes you must tell pyOCD.

e Setwith-t TARGET / --target=TARGET

. Or with a config file Probes’ connected target type is in brackets if known.

Unique ID

00000080317099a85fdf51158d5dfcaa6102ef474c504355
500700001c161cd400000000000000000000000097969902
5005000019150e4b0000000000000000VVVBRRO7969902
001700343137510D39383538
02400b0129164e450044001270600071301000097969900
02270b0341114e450014300ac207002392d1000097969900
002100075553500E20393256

960177309

* Default target type is “cortex_m”
« Architectural memory map
« No flash programming
« No custom target debug logic
« — pyocd warns if cortex_m gets used by default.

(%]
1
p
3
4
5
6
7

12 © 2021 Arm a r m

Checking and installing target support

e Two sources of target support:

1. Built-in
2. CMSIS Device Family Packs (DFPs)

* Check for target type with pyocd 1ist —--targets —--name TARGET-TYPE-NAME
- Will print all matching installed targets and the source.
- Partial target type names are accepted; match is case-independent.
- Be aware that built-in target type names are usually not the full part number.

* To find and install CMSIS DFP target support:
- pyocd pack find PART-NUMBER
- pyocd pack install PART-NUMBER
- Partial names are accepted; match is case-independent.

13 © 2021 Arm a r m

Configuration

14

“Session options” can be set in several ways:
- Many common session options have dedicated command line arguments.
« Passed on pyocd command line with —Ooption[=value] arguments.
- Place in a pyocd.yaml config file in your project directory.

Config files support both global and probe-specific options.

« Probe-specific config is very useful for setting the target type of standalone probes!
Exampl nfig file: | - :
ample contig thie . # Probe—-specific options.
' probes:
'\ O66EFF555051897267233656: # Probe's unique ID.
target_override: stm321475xg

' # Global options

auto_unlock: false

§frequency: 8000000 # Set 8 MHz SWD default for all probes

. persist: true # Make gdbserver persist after gdb disconnects

Session option documentation: https://pyocd.io/docs/options.html

© 2021 Arm

https://pyocd.io/docs/options.html

Programming memory
Usage: pyocd load <file> [<file>..]

* Use to quickly program one or more files to device memory (flash and/or RAM).

* Accepts binary, Intel hex, and ELF files.

* To force chip or sector erase:
——erase {auto,chip,sector}

The default is sector. auto uses chip or sector depending on which is estimated to be fastest.

* To set the base address for binary files:

- Append RADDRESS to the binary file’s name on the command line.
- e.g.,,pyocd load mybinary.bin@0x8000

« Or use the —a / ——base—-address ADDRESS argument (works only if one supplied binary file).

- The default is to use a base address of the start of flash.
— Again, works only for one supplied binary file.

15 © 2021 Arm a r m

arm Debugging with VSCode
I and Cortex—Debug

Debugging options

There are several options for how you debug using pyOCD. All rely on gdb.

1. Command line gdb

Go old school!

CORTEX 2. Visual Studio Code with Cortex-Debug extension

Debug

G% 3. Eclipse Embedded CDT

17 © 2021 Arm a r m

Cortex-Debug plugin

This plugin provides a debug adaptor for Cortex-Debug .42 s

marus25 | & 188,318 | k% %k k% (31)

a r m - n O n e _e a b i -gd b W it h S u p p O rt fo r CORTEX ARM Cortex-M GDB Debugger support for VSCode

Deuug Disable v Uninstall v O 5%

pyo C D a n d Ot h e r gd bS e rve rS . This extension is enabled globally.

Details Feature Contributions Changelog Runtime Status

« Semihosting Support (this should be working now)

Installation Debuggers
Install the Cortex-Debug plugin from the

* ARM GCC Toolchain (https://developer.z com/open-sourc u-toolchain/gnu downloads) - provides

exte n S i O n S m a r ket p | a Ce . arm-none-eabi-gdb and related tools

* At least one of: License

o J-Link Software Tools - provides the J-Link GDB Server for J-Link based debuggers
(htt lownloads/jlink)
OpenOCD - provides a GDB Server that can be used with a number of debuggers (htt; Lol) Released on 1/12/2018, 19:15:11

= NOTE: On macOS do not use the default version of OpenOCD provided by homebrew, this is not Last updated 8/16/2021, 10:31:39
Identifier marus25.cortex-

debug

More Info

compatible with releases V0.2.4 and newer. You can either install from source using homebrew
(brew install open-ocd --HEAD) or the packages from https://github.com/gnt
eC enocd/releases will also work. Some linux versions and Windows may also need a

more up-to-date version of OpenOCD from the gnu-mcu-eclipse releases.

Texane's st-util GDB server - Only supports ST-Link Debug Probes (https://github.com/texane/s)
ST-LINK GDB server - This server is packaged with the STM32CubelDE which must be installed. The
location of the STM32CubelDE and related tools is automatically resolved but also can be overridden
using configuration settings (armToolchainPath, stm32cubeprogrammer and serverpath).
pyOCD GDB Server - GDB server that supports the CMSIS-DAP debugger on a number of mbed
boards (h / [Y ull |)

Black Magic Probe

18 © 2021 Arm a r' m

https://marketplace.visualstudio.com/items?itemName=marus25.cortex-debug

Launch configuration

* Add a configuration to Example 1aunch.json:
.vscode/launch.json for your s e o SRl e e | I— i
project. "cwd": "${workspaceRoot}", ;

i "executable": "${workspaceRoot}/firmware.elf",

"name": "pyOCD Debug",
"request": "launch",

* You can use the Add Configuration... | "type": "cortex-debug",
. i "servertype": "pyocd",
menu item to get started. | userverpath": "<path—to-pyocds"

"targetId": "<target-type—name>", .
"serverArgs": [// <- cmdline args for pyocd i
RUN AND DEBUG [+ nRF5340 Debug ' "——uid=<probe-id>", // probe unique ID

psadebugutil musca-b2 | "——core=0", // run gdbserver for only this core
psadebugutil Ipc55xx i] .

FachiaUhob ol . "svdFile": "<path-to-svd>",

"showDevDebugOutput": false, :

CALL STACK

Node.js...

1
1
Add Configuration... i }
1
1}

Config attribute docs: https://github.com/Marus/cortex-debug/blob/master/debug_attributes.md
19 © 2021 Arm The docs say to use boardld for the probe unique ID, but that uses an old pyocd command line argument. a r m

https://github.com/Marus/cortex-debug/blob/master/debug_attributes.md

Debugging tips

1. (This may be obvious, but...) Make sure you use a Debug build!

2. SVD files can be obtained from CMSIS Packs

« Download pack from https://www.keil.com/dd2/pack/
- Extract as zip file and look for SVD file

3. Add "gdbPath": "arm-none-eabi-gdb-py" to the launch config to enable Python in GNU-RM gdb and/or (with an
absolute path) specify a gdb not in your PATH.

4. Use "--core=N"in "serverArgs" to select the core to debug on multicore targets.
« Otherwise Cortex-Debug tells pyocd to use conflicting TCP ports, and it fails to start.

5. Cortex-Debug sometimes didn't properly terminate the pyocd process when stopping.
« If you see an "Unable to open device: open failed" error, run pkill -f 'pyocd gdb’.

6. gdb may report “Ignoring packet error, continuing...” when programming flash, but these seem to be harmless.

20 © 2021 Arm a r m

https://www.keil.com/dd2/pack/

TZ-M limitations

* Primary limitations of gdb:

- Lack of support for multiple CPU contexts
- Doesn’t deal well with multiple symbols loaded with the same name, such as main()

* For practical purposes, this restricts you to debugging one world at a time.

21 © 2021 Arm a rm

Cortex-Debug config tips for TF-M

1.

22

TF-M requires some additional launch config settings due to its complexity.

Create separate launch configs for S and NS debug.
- Set the "executable" to either tfm_s.elf or tfm_ns.elf.

Override the standard Cortex-Debug gdb launch script to control how the TF-M code is
loaded upon connect:

IR IR TSR IRIR=
"mon load ${workspaceRoot}/cmake_build_Debug/bin/bl2.bin 0xA000000"

. "mon load ${workspaceRoot}/cmake_build_Debug/bin/tfm_s_ns_signed.bin
0xA020000" ,

"mon reset halt",
"flushregs", // Not strictly necessary if continuing after the reset.

© 2021 Arm a r m

am 0 QA

arm

© 2021 Arm

- Thank You

Danke
Gracias
G

HYHED
Asante
Merci

At

Tddlc
" Kiitos
1K
AT

NTIN

© 2021 Arm

*The Arm trademarks featured in thi$ presentation are registéred

trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

+ e + + + +
T T T T T T

www.arm.com/company/policies/trademarks

arm = Bxraslides

gdbserver data flow with DAP

gdb Remote Serial CMSIS-DAP, ...

Protocol /
/ pyOCD

sdbserver Target MCU

GDB/MI e \

Cortex-Debug

debug adapter

Even more complex with Cortex-Debug!

N e e - ——

27 © 2021 Arm a r m

Flash programming options

By default, pyOCD attempts to optimise flash programming by

1. Choosing chip or page erase by estimating which is fastest.
2. Not reprogramming unchanged data, including erased pages.

* These options require scanning target memory for comparison.
* When actively developing, it can boost programming speed quite a lot.

* But for large memories and situations like Cl, where the new firmware is always unique, it can negatively
affect performance.

T I e

smart_flash bool true Controls content analysis and differential programming optimisation. Set
to false to use naive programming.

keep_unwritten bool true Whether to preserve existing flash content for ranges of sectors that will
be erased but not written with new data.

chip_erase str "auto” “auto”, “sector”, or “chip”

(Defaults may change in the future.)

28 © 2021 Arm a r m

erase subcommand

Usage: pyocd erase [-—-chip | —--sector <address-ranges..>]

* Allows you to easily erase the entire chip or any number of sectors.
« Only erases flash memory.

* To erase the whole chip, use the ——chip option.

* To erase individual sectors, pass ——sector and a list of address ranges.

29

Smax|oomple | Desspon

address 0x1000
start-end 0x800-0x2000
start+length 0+8192

erase single sector starting at 0x1000
erase sectors starting at 0x800 up to but not including 0x2000

erase 8 kB starting at address O

The erased range will be rounded up to the next whole sector.

© 2021 Arm

arm

