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W h a t I S R P C ? *https://en.wikipedia.org/wiki/Remote_procedure_call
[ ]

**https.//www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

-- Remote procedure call (RPC)*
- procedure calls executed in a different address space.
- usually in a form of client/server interaction to invoke calls.
-« can be between any two entities with different processes and have different address space.
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Why RPC style tests in TF-M?

-~ Current test framework is built as part of NS binary.

- Inflexible, as tests increases, the memory requirement increases.
- because of low footprint platform boards, we must run different binaries running subset of tests at a

time.
+-e.g. some Musca boards can't afford the whole PSA ACK test suite in one go.

-- Running more complex test frameworks targeted to PSA APIs is not feasible due to the

limitation of the environment where the test runs.
- e.g. mbed TLS based PSA regression

-- Current test output is provided as text logs along the UART channel.
- making it difficult to parse on the host system to understand failure.
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Why RPC style tests in TF-M?

-- Therefore, we require a solution which can interrogate with the board
programmatically.

-- RPC tests makes it easier to scale test cases.

- since the entire test framework can run within host.
- The size of the framework of the tests running on the NS world remains constant over time.
-« Could help in enabling all the features and tests on target by default.

-- This allows to have rich test environments and increases flexibility and add more

options for automation integration.
- making it easier to understand failures.

-- Cons:
- This solution makes it more difficult to simulate threads on the NS environment.
-~ although the NS tests should focus on API validity rather than verifying more of the NS-ID identification capability of TF-M.
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Proposed Framework

--= Our current framework looks like,
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Proposed Framework

-- New proposed test framework
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Proposed Framework

-- In the proposed test framework,

- On the target,
+There is a ns client application running RPC test framework.

+Includes a lightweight server handler which receives and handles service calls.

+-Server session runs indefinitely(Until requested to stop)
« On the host,
-+~ Contains all testsuites without target limitations.
--Has RPC client making service request and receiving processed data.
-~ Tests can be built seperately to the target binaries.
+-Can run multiple times for long as server session is active.
- The communication is done over Serial-UART channel.
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RPC interface

-- In this work, we have used eRPC* framework for the RPC interface
- Lightweight
- Easy to integrate for our use case.
-+ supports abstraction over CMSIS-UART drivers which we use in our platforms
« Helps with serializing and de-serializing data into byte-streams
« Transports them via common communication channels(serial-UART for our use case)
- At each end this data is interpreted into a function call and corresponding arguments

- Memory footprints is very low.
- Licensing: Unrestrictive BSD 3-clause

*https://github.com/EmbeddedRPC/erpc
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Proposed Software Model
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Proposed Software Model

Host Program

Main
applications
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Proposed Software Model

Host Program

calls
ns_secure_
testsuite()

Main
applications

* Main host side program.
* Handles client rpc init and deinit.

* Calls tests/secure_fw/non_secure_suites.c
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Proposed Software Model
Host Program

calls psa_calls/
ns_secure_ Tests tfm_ns_
testsuite() dispatcher

Shim TF-M
services

Main
applications

* The prototype of the testsuite functions are same.
 Based on IPC or Library mode, the corresponding interface is used.
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Proposed Software Model

Host Program

calls psa_calls/
ns_secure__ Tests tfm_ns_

Main
applications

Shim TF-M rpc_ns_ RPC Host

. . services interface
testsuite() dispatcher () Handler

The incoming service calls are handled by shim functions.

 Every TF-M service api has an id which is used to identify the function or the type of interface call
used.

It calls rpc_host_handler to package these data along with invec-outvec parameters.
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Proposed Software Model

Host Program
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* Packages parameters(invecs, outvecs) and properties of the call, and other data into rpc
packet.

* This package is sent to eRPC to transmit to the target.
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Proposed Software Model

Host Program

‘----\

calls psa_calls/
ns_secure_ Tests tfm_ns_
testsuite() dispatcher

Main
applications

Shim TF-M rpc_ns_ RPC Host rpc_invoke
services interface() Handler _handler()

[
Target Program : RPC COM
[

\-----_

* Receives eRPC data.
* Un-packages invecs, outvecs, types of call, and other data from rpc package.
* Based on the type of call, TF-M services are called.

15 © 2022 Arm q r m



Proposed Software Model

-- 'RPC Sequence' in this work is defined as a set of,

- tfm_rpc_invoke _handler handles tfm services and calls and returns the status of this event. A

tfm_rpc_packet is sent to the server which includes all the data necessary to handle a remote tfm

service call.

- tfm_rpc_get_packet fetches the data after a handler invocation. The processed data is sent if there

was no error with the previous service handling.

|

tfm_rpc_invoke_handler ..L

Felc

( return tfm_rpc_status

: tfm_rpc_get_packet ’E
; return packet

T oo oo SR .
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Executing tests

-- We have evaluated the framework by running tests for TEST_NS_ATTESTATION,
TEST_NS_AUDIT, TEST_NS_CRYPTO, TEST_NS_ITS, TEST _NS_PS*, TEST_NS_PLATFORM.

- They run and pass as expected.

-- We can build the binaries by setting the macro “-DTEST_RPC_API=ON” on our existing

buildsystem.
« Currently, host is Linux system.

-- Execute following command to run the host program,
<cmake_build folder>/host_rpc/tfm_rpc_host -p <target portname> -e

*To get around the limitation of multiple threads for the Protected Storage test suites,
we have stubbed those functions since we don’t need them currently.
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Resulting Memory Footprint

-- The memory footprint of target(for tfm_ns binary) is given as follows,

Lib Model (in B) IPC Model (in B)

FLASH RAM FLASH | RAM
No Tests 14088 13984 14088 | 13984

With NS Tests 129116 | 25152 131440 | 25184

With RPC_NS tests* 22280 14240 | 22180 | 14240

-- The advantage of this framework is that RPC_NS test figure is going to stay the same
irrespective to the complexity and the number of test cases on the host-side.

*Enabled TEST_NS_ATTESTATION, TEST_NS_AUDIT, TEST_NS_CRYPTO,
TEST_NS_ITS, TEST_NS_PS, TEST_NS_PLATFORM.
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Activities Terminal v 6Mar 11:29 ®
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Usecase: Python Wrapper prototype

-- Using RPC framework, we can interrogate with the board in real-time.
- Helps understanding failures easily.

-- To evaluate this functionality we have used CFFI as our backend to link with rpc_host
shared library.

- Easy to integrate for our current use.
- No additional learning of wrapper languages or maintenance.
- Compatible with Python 2 and 3.
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Usecase: Python Wrapper prototype

-- Preparing host client using following code.

from tfmrpc import crypto, rpc

_rpc = rpc.rpc('tfmrpc/wrapper_defs/rpc.h', './libtfm_rpc_host.so’)
_crypto = crypto.crypto('tfmrpc/wrapper defs/crypto.h', './libtfm rpc_host.so’)

portname = _rpc.new('char[]', '/dev/ttyACMO')
_rpc.tfm _rpc_host _init(portname)
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Usecase: Python Wrapper prototype

-- Defining variables

_crypto.psa_key attributes t.new(
_type 9216,
_bits 9,
_lifetime
_id = 9o,

_usage =1,
_alg = 9)

_data = _crypto.new('char[]', 'This is py_wrapper test')
_data_length = 24

_key = crypto.new('psa_key id t *')

-- An example to call a tf-m service from host is given below:

_crypto.psa_import key( attr, _data, _data length, _key)
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Activities Terminal ~ 6Mar 14:48 e

Target Host

a@vb: ~ I+ root@vb: /home/a

:~$ picocom -b 115200 -rl /dev/ttyAcvo i root@vb: /home/a# D
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