arm

Trusted Firmware — M
RPC Test Framework

Arnold Gabriel Benedict
17 Mar, 2022

W h a t I S R P C ? *https://en.wikipedia.org/wiki/Remote_procedure_call
[]

**https.//www.geeksforgeeks.org/remote-procedure-call-rpc-in-operating-system/

-- Remote procedure call (RPC)*
- procedure calls executed in a different address space.
- usually in a form of client/server interaction to invoke calls.
-« can be between any two entities with different processes and have different address space.

|
e Exa m p I e * *, Caller (client process) Callee (Server process)

: waiting for request

Request message
(contains remote
procedure's parameter)

\,

Call procedure

Ll
1]
I
i
I
i
]
]
1
i
i
I .
1 Receive request and

start procedure execution

waiting for reply
Procedure executes

Y

Send reply

I

Reply message
(contains result of
procedure execution)

Resume execution

waiting for next request

¥ Remote procedure call model

2 ©2022 Arm a r’m

Why RPC style tests in TF-M?

-~ Current test framework is built as part of NS binary.

- Inflexible, as tests increases, the memory requirement increases.
- because of low footprint platform boards, we must run different binaries running subset of tests at a

time.
+-e.g. some Musca boards can't afford the whole PSA ACK test suite in one go.

-- Running more complex test frameworks targeted to PSA APIs is not feasible due to the

limitation of the environment where the test runs.
- e.g. mbed TLS based PSA regression

-- Current test output is provided as text logs along the UART channel.
- making it difficult to parse on the host system to understand failure.

3 ©2022 Arm a r’m

4

Why RPC style tests in TF-M?

-- Therefore, we require a solution which can interrogate with the board
programmatically.

-- RPC tests makes it easier to scale test cases.

- since the entire test framework can run within host.
- The size of the framework of the tests running on the NS world remains constant over time.
-« Could help in enabling all the features and tests on target by default.

-- This allows to have rich test environments and increases flexibility and add more

options for automation integration.
- making it easier to understand failures.

-- Cons:
- This solution makes it more difficult to simulate threads on the NS environment.
-~ although the NS tests should focus on API validity rather than verifying more of the NS-ID identification capability of TF-M.

© 2022 Arm a r' m

5

Proposed Framework

--= Our current framework looks like,

© 2022 Arm

TARGET
1
1
1
N 1O
TF-M-TESTS :
|
NS-Client !
Application ‘-_:’
|
) 1
! TF-M
:
Test Suites :
:
1
1
1
7 1
A BN
1
NSE : SE

arm

Proposed Framework

-- New proposed test framework

HOST TARGET
1
1
1
(N |~ .
ERPC-TESTS TE-M-TESTS :
s = :
NS-Client 1
[Application }‘- | '

1
Test Suites :

: TF-M
:
S Y, :
1
UART S 1
eRPC Client > Light-weight eRPC :
Serial Server :

\ J : \)
1
NSE ; SE

6 © 2022 Arm r

7

Proposed Framework

-- In the proposed test framework,

- On the target,
+There is a ns client application running RPC test framework.

+Includes a lightweight server handler which receives and handles service calls.

+-Server session runs indefinitely(Until requested to stop)
« On the host,
-+~ Contains all testsuites without target limitations.
--Has RPC client making service request and receiving processed data.
-~ Tests can be built seperately to the target binaries.
+-Can run multiple times for long as server session is active.
- The communication is done over Serial-UART channel.

© 2022 Arm

arm

RPC interface

-- In this work, we have used eRPC* framework for the RPC interface
- Lightweight
- Easy to integrate for our use case.
-+ supports abstraction over CMSIS-UART drivers which we use in our platforms
« Helps with serializing and de-serializing data into byte-streams
« Transports them via common communication channels(serial-UART for our use case)
- At each end this data is interpreted into a function call and corresponding arguments

- Memory footprints is very low.
- Licensing: Unrestrictive BSD 3-clause

*https://github.com/EmbeddedRPC/erpc

8 ©2022 Arm 0 rm

9

Proposed Software Model

© 2022 Arm

HOST_TEST

TARGET_TEST

ns_thread '

_THREAD

server_start()

—tfm_ns_client_run_tests—» non_secure_suites '

. : : '

f Single test pea. apl_calls, or SPM
' tfm_ns_dispatcher calls) ' -
' P rpc_ns_interface '
| ' tfm_rpc_invoke_handler ! ;
' . S b L Handle Task) '
: . service call gt
; ; < return 'U Service
E i(return tfm_rpc_status !
: : tim_rpc_get_packet ' 5
’ ' Fetch Task results ;
! ' return packet '
' - - R occciscRamsssessas *r :
i return resu ! / '
: i R : :
' e '

: : ‘

! return i '

WeEms AR SR AR dAR S aNA RS SR RS M '

: tfm_rpc_end_comm ;

H server_deinit()

'

Client_deinit()

&

+

[Host System eRPCinterface []] Target System

arm

Proposed Software Model

Host Program

Main
applications

10 © 2022 Arm a r m

Proposed Software Model

Host Program

calls
ns_secure_
testsuite()

Main
applications

* Main host side program.
* Handles client rpc init and deinit.

* Calls tests/secure_fw/non_secure_suites.c

11 © 2022 Arm a r m

Proposed Software Model
Host Program

calls psa_calls/
ns_secure_ Tests tfm_ns_
testsuite() dispatcher

Shim TF-M
services

Main
applications

* The prototype of the testsuite functions are same.
 Based on IPC or Library mode, the corresponding interface is used.

12 © 2022 Arm a r m

Proposed Software Model

Host Program

calls psa_calls/
ns_secure__ Tests tfm_ns_

Main
applications

Shim TF-M rpc_ns_ RPC Host

. . services interface
testsuite() dispatcher () Handler

The incoming service calls are handled by shim functions.

 Every TF-M service api has an id which is used to identify the function or the type of interface call
used.

It calls rpc_host_handler to package these data along with invec-outvec parameters.

13 © 2022 Arm a r m

Proposed Software Model

Host Program

/ A

. calls psa_calls/ . . |
. Il\i/lcaaltr;ons ns_secure_ Tests tfm_ns_ S:IeTvI:FesM inrticlr¥:§;() RHPC ::lo o rphc;r:r(;\llsrl?)e RPCCOM |
i testsuite() dispatcher analer — 0

am s = =u =m o

* Packages parameters(invecs, outvecs) and properties of the call, and other data into rpc
packet.

* This package is sent to eRPC to transmit to the target.

14 © 2022 Arm a r m

Proposed Software Model

Host Program

‘----\

calls psa_calls/
ns_secure_ Tests tfm_ns_
testsuite() dispatcher

Main
applications

Shim TF-M rpc_ns_ RPC Host rpc_invoke
services interface() Handler _handler()

[
Target Program : RPC COM
[

\-----_

* Receives eRPC data.
* Un-packages invecs, outvecs, types of call, and other data from rpc package.
* Based on the type of call, TF-M services are called.

15 © 2022 Arm q r m

Proposed Software Model

-- 'RPC Sequence' in this work is defined as a set of,

- tfm_rpc_invoke _handler handles tfm services and calls and returns the status of this event. A

tfm_rpc_packet is sent to the server which includes all the data necessary to handle a remote tfm

service call.

- tfm_rpc_get_packet fetches the data after a handler invocation. The processed data is sent if there

was no error with the previous service handling.

|

tfm_rpc_invoke_handler ..L

Felc

(return tfm_rpc_status

: tfm_rpc_get_packet ’E
; return packet

T oo oo SR .

16 © 2022 Arm

arm

Executing tests

-- We have evaluated the framework by running tests for TEST_NS_ATTESTATION,
TEST_NS_AUDIT, TEST_NS_CRYPTO, TEST_NS_ITS, TEST _NS_PS*, TEST_NS_PLATFORM.

- They run and pass as expected.

-- We can build the binaries by setting the macro “-DTEST_RPC_API=ON” on our existing

buildsystem.
« Currently, host is Linux system.

-- Execute following command to run the host program,
<cmake_build folder>/host_rpc/tfm_rpc_host -p <target portname> -e

*To get around the limitation of multiple threads for the Protected Storage test suites,
we have stubbed those functions since we don’t need them currently.

17 © 2022 Arm 0 r m

Resulting Memory Footprint

-- The memory footprint of target(for tfm_ns binary) is given as follows,

Lib Model (in B) IPC Model (in B)

FLASH RAM FLASH | RAM
No Tests 14088 13984 14088 | 13984

With NS Tests 129116 | 25152 131440 | 25184

With RPC_NS tests* 22280 14240 | 22180 | 14240

-- The advantage of this framework is that RPC_NS test figure is going to stay the same
irrespective to the complexity and the number of test cases on the host-side.

*Enabled TEST_NS_ATTESTATION, TEST_NS_AUDIT, TEST_NS_CRYPTO,
TEST_NS_ITS, TEST_NS_PS, TEST_NS_PLATFORM.

arm

18 © 2022 Arm

Activities Terminal v 6Mar 11:29 ®

19 © 2022 Arm

Usecase: Python Wrapper prototype

-- Using RPC framework, we can interrogate with the board in real-time.
- Helps understanding failures easily.

-- To evaluate this functionality we have used CFFI as our backend to link with rpc_host
shared library.

- Easy to integrate for our current use.
- No additional learning of wrapper languages or maintenance.
- Compatible with Python 2 and 3.

20 © 2022 Arm a r' m

Usecase: Python Wrapper prototype

-- Preparing host client using following code.

from tfmrpc import crypto, rpc

_rpc = rpc.rpc('tfmrpc/wrapper_defs/rpc.h', './libtfm_rpc_host.so’)
_crypto = crypto.crypto('tfmrpc/wrapper defs/crypto.h', './libtfm rpc_host.so’)

portname = _rpc.new('char[]', '/dev/ttyACMO')
_rpc.tfm _rpc_host _init(portname)

21 © 2022 Arm 0 r m

Usecase: Python Wrapper prototype

-- Defining variables

_crypto.psa_key attributes t.new(
_type 9216,
_bits 9,
_lifetime
_id = 9o,

_usage =1,
_alg = 9)

_data = _crypto.new('char[]', 'This is py_wrapper test')
_data_length = 24

_key = crypto.new('psa_key id t *')

-- An example to call a tf-m service from host is given below:

_crypto.psa_import key(attr, _data, _data length, _key)

22 © 2022 Arm

arm

Activities Terminal ~ 6Mar 14:48 e

Target Host

a@vb: ~ I+ root@vb: /home/a

:~$ picocom -b 115200 -rl /dev/ttyAcvo i root@vb: /home/a# D

© 2022 Arm

References

-- https://github.com/EmbeddedRPC/erpc/wiki
-- https://embeddedrpc.github.io/
-- https://cffi.readthedocs.io/

24 © 2022 Arm a r' m

arm

© 2022 Arm

Thank You
Danke
Gracias
Grazie

157 159
HYMES
Asante
Merci

T AL CF
Yddiq
Kiitos

I8
SRIBIN]
NTIN

© 2022 Arm

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in
the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

