
© 2023 Arm

Anton Komlev

September 2023

TF-M split build

continue

2 © 2023 Arm

Background and problem definition

A single build process for 3 binaries

Sharing config options leads to:
• Large and complex configuration set
• High entrance barrier for TF-M App developer
• Maintenance difficulty
• Error-prone and vulnerable to side-effects

Require tricks in CMake build script to support
different CPUs on S and NS

Build starts from SPE - reverse logic

Can we reduce dependencies in this Client -
Server scenario?
• BL1, BL2 and S configurations are mainly

defined by HW platform
• Separate codebase for NS and S sides

SPE
Secure Processing

Environment

Boootloader

3 © 2023 Arm

Split build alternative
2 semi-independent projects

TF-M = SPE = Secure(S) side

Developer selects
• A platform
• Secure service set

A platform has highest config priority
• CPU cores and HW capabilities
• Memory layout and peripherals

Outputs = exports = installs
• PSA interface
• BLs, S binaries
• Bin image tools (signing, merging)
• NS toolchains

• NS platform
Sources
MCPU + Arch

Application = Non-Secure(NS) side

An application code

Builds and links with NS platform sources

Combines with BL, S binaries

BLs and S
• Stay the same
• OEM can ship it in binaries

Is independent from S build
• Toolchain and options
• S source tree

A platform specific

4 © 2023 Arm

Implementation

Installation script is extended to install:
• Common NS platform files

CMSIS
Toolchaines
Link scripts/scatters
CMakeLists.txt for platform_ns

• spe_config.cmake
• spe_export.cmake
• CMakeLists.txt for SPE

A Platform installs
• NS platform sources

Startup
Drivers

• Linker script (scatter)

TF-M does not dictate how to build TF-M
application

5 © 2023 Arm

Configuration
Most of configuration options are on S side

S side

Configurations
• Platform selection
• Secure services

Config mechanisms
• Kconfig
• Predefined or custom profiles
• CLI settings

A small subset of config options caried to NS
application because:
• A platform is selected
• Partitions are defined

NS side

Nothing to configure for TF-M itself

App can retrieve some SPE options

/api_ns
• bin
• cmake
• interface
• platform
• CMakeLists.txt

spe_config - variables
spe_export - definitions
platform/CMakeLists
CMakeLists

include(spe_config)
include(spe_export)

add_library(tfm_api_ns)

add_subdirectory(platform)

target_link_libraries(tfm_api_ns
platform_ns

tfm_config
)

6 © 2023 Arm

Platform porting steps
Move S side CPU and Arch definitions from preload.cmake →config.cmake

Add installation instructions for NS platform sources to CMakeListst.txt.
• Following destination variables are available:

INSTALL_INTERFACE_INC_DIR - <dst>/interface/include
INSTALL_INTERFACE_SRC_DIR - <dst>/interface/src
INSTALL_INTERFACE_LIB_DIR - <dst>/interface/lib
INSTALL_IMAGE_SIGNING_DIR - <dst>/image_signing
INSTALL_CMAKE_DIR - <dst>/cmake
INSTALL_PLATFORM_NS_DIR - <dst>/platform

All files from /ns/ folder will be installed. Those 2 are expected
• ns/CMakeLists.txt - Script for building platform_ns target
• ns/cpuarch.cmake - definitions of CPU and Arch

Remove
• preload.cmake
• Traces of platform_ns, NS from <tf-m platform>/CMakeListst.txt

Musca-B1 porting example:
https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/23468/

Takes about 1 day (with a luck)

https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/23468/

7 © 2023 Arm

“Hello TF-M” demo app
Ref: tf-m-extras/tf-m-example-ns-app [not merged at the demo time]

Main.c CMakeLists.txt

© 2023 Arm

Demo time

9 © 2023 Arm

Tests
Are TF-M applications. Adopted and decoupled

Key changes

Now builds as independent TF-M applications
• Regression tests
• PSA-Arch tests
• ERPC server

CONFIG_TFM_TEST_DIR
• Included as sub_directory() into SPE build

NS Tests execution environment is gathered into
app_broker target

Tests provides only entrance function:
• void test_app(void *argument)

New structure

NS Test
app

App
broker

CMSIS
RTX

NS tests SPE

S tests SPE BL2

Same source
code tree

10 © 2023 Arm

Current status
Ported to an521, Musca-B1, Musca-S1 platforms

Major regression tests and PSA Arch tests are passed on those platforms
• Some tests (like FP) are not yet adapted

OpenCI is ready for basic testing on the staging environment

Changes are in feature-build-split-v2 branches of TF-M and tf-m-test repositories
• https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/23572
• https://review.trustedfirmware.org/c/TF-M/tf-m-tests/+/23209/

Open technical questions
• Repositories version’s synchronization: TF-M  tf-m-tests  tf-m-extras

Released versions are synched by tags
Use manual synchronization in a daily work

• Mechanism for platforms to influence on NS exports
extend/redefine/overwrite common NS settings. No need so far but shall be useful in theory

TODO:
• Port to remaining platforms
• Add ArmClang and IAR toolchains support
• Documentation
• Port ERPC testing framework
• Clean Code tree from the single build remains

Deprecate obsolete config option

https://review.trustedfirmware.org/c/TF-M/trusted-firmware-m/+/23572
https://review.trustedfirmware.org/c/TF-M/tf-m-tests/+/23209/

11 © 2023 Arm

Discussion

Deployment method
1. One time switch in Nov 2023 release → TF-M v2.0.0
2. Offer a deprecation time, but:

Overhead in maintaining 2 versions
Potential conflicts between them
Which version to test in CI

© 2023 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

	Slide 1: TF-M split build
	Slide 2: Background and problem definition
	Slide 3: Split build alternative
	Slide 4: Implementation
	Slide 5: Configuration
	Slide 6: Platform porting steps
	Slide 7: “Hello TF-M” demo app
	Slide 8: Demo time
	Slide 9: Tests
	Slide 10: Current status
	Slide 11: Discussion
	Slide 12

