By splitting

3 -’v =
- 2 i

David Hu
January 20, 2022

© 2022 Arm

an

d NSPE

2

Typical build process

-- Build TF-M and NSPE independently
- A typical sequence
-+ Build TF-M
-+ Export files and binaries
-+ Build NS RTOS and application with files exported by TF-M
-+ Combine secure image and non-secure image

— Secure binaries

e v

— Export files

NS ROTS

\ 4

NS apps

© 2022 Arm

¢

NSPE build ——> NSbinary ——> Combined image .~

arm

Limitations of current TF-M build sequence

-~ Integration of NS build and SPE build is simplified

- Bootloader (BL), TF-M SPE and NSPE configs/builds are mixed
-+ NS libraries are built together with secure ones
-+ NS is built with TF-M source code directly, rather than with the exported/installed ones

= ——-——

- -
- ~—
-

e

- . <9 ~ L @ TF-M SPE library
4 , y tfm_s binary % - Combined image
Config/build

{
—-— — b sequence
. . - _ .
S Se o - tm_ns b2 pinary
~e_ T~ __ __- -~ binary

- A clearer reference can help developers better understand how to integrate TF-M

‘ Non-secure library

BL library

3 ©2022Arm a rm

4

Limitations of current TF-M build sequence

-- Difficult to specify distinct configurations for BL, SPE and NSPE

- Multi-core platforms: non-secure core and secure core require different configurations
+-Reload NS toolchain configuration before NS libraries are added.
-+ It requires to carefully maintain CMake file structure and select the correct places to reload config

if (TFM_MULTI_CORE_TOPOLOGY)
include(..../preload ns.cmake)
tfm toolchain reload compiler ()

The platform target is created in this directory/file
so that it has the same settings as the main ns target.

add_library(platform ns STATIC EXCLUDE_ FROM ALL)

endif ()
- Floating-Point feature support: dedicated FP build flags target_compile options (tfm_gcbor s
+ Current workaround explicitly sets FP build in each TF-M library PRIV?TEDMPILER_CP_FLAG}
= Even if a library doesn’t need FP support)

-- Non-trivial maintenance effort

- Less extensible in more complex trusted system or with new security features.

© 2022 Arm

arm

Limitations of current TF-M build sequence

-- Pay attention to some issues
- Link secure libraries to non-secure build
- Header files not exported as request
- Specify secure build flags for non-secure libraries, and vice versa

5 ©2022Arm a rm

Proposal

-- Separate builds of BL, TF-M SPE and NSPE

- Build each module as a CMake external project under a virtual top-level project
- Simulate actual integration scenarios

! Virtual top-level project :
' Trusted firmware-M |
1 1
| | if (BL2)
' Y ' ExternalProject Add(BL2
! BL2? —_— BL build e
1 !)
1
I N ! endif ()
: .. e
! |
| = ! ExternalProject Add(TF-M-SPE
| TF-M SPE build < -
| -)
1 1
1 1
l [SR _._4_._......._._,_._._._._4_._......._._,_._._._._4_._......._._,_._._._._4_._..I ..
! :
: v ! if (NS)
1 Y ' ExternalProject Add(TF-M-NSPE
: NS? NSPE build -
1
1 !)
! I endif ()
e 1

6 © 2022 Arm a rm

Proposal

-- Goals

- Make it easier when users integrate downstream TF-M in actual scenarios with similar build sequence
-+ Less integration cost
-+ Fewer surprise

- Users can take the top-level project Cmake file as a reference
+-Replace BL2 and tf-m-tests with own bootloader and NSPE respectively

7 © 2022 Arm q rm

8

Details

Configuration process

-- Add a top-level project configuration step
- Specify the configurations which impact the whole
project structure

-+-3"d-party open-source projects shared by multiple modules
= tf-m-tests

= PSA Arch test

= Mbed TLS

-- Each module performs its own configuration

during its dedicated build

- Each build can specify its dedicated configs in its own
config file

© 2022 Arm

__

Virtual top-level project
Trusted firmware-M

1
1
1
1
1
1
1
1
Top-level .
. . |
project config .
1

1

1

1

1

1

1

1

1

1

1

Y
BL2? —— > Bl config

. l*’I" _____________ .

SPE config <
TF-M SPE build

NSPE build

9

Details

Changes to platforms

-- Separate platform root cMakeLists. txt

- BL, TF-M SPE and NSPE add dedicated platform libraries and include target respectively

© 2022 Arm

Current ext/platform/CMakeLists. txt

bl2/platform/CMakeLists. txt

add library(platform s STATIC)
add library(platform ns STATIC
EXCLUDE FROM ALL)
if (BL2)

add library(platform bl2 STATIC)
endif ()

target sources (platform s
)
target sources(platform ns
)

if (BL2)
target sources(platform bl2

)
endif ()

add library(platform bl2 STATIC)
target sources (platform bl2

)

tf-m-spe/platform/CMakeLists. txt

add library(platform s STATIC)
target sources (platform s

)

»

tf-m-tests/app/platform/CMakeLists. txt

add library(platform ns STATIC)
target sources (platform ns

)

»

Target platform

arm

Details
Changes to platform (cont’d)

target platform’s CMakeLists. txt

if (SPE_BUILD)
target sources(tfm s

Individual platform dedicated CMake files)

- Add conditional check for building module specific rergetsonress lplatiom. 2
)

libraries
.) ndif ()
- Update file paths due to trusted-firmware-m code e
if (NS BUILD)
StrUCtU re Change tgrget_sources(tfm_ns
+ PLATFORM DIR -

- TFM TOP SOURCE DIR target sources (platform ns
) .
endiéi;

if (BL_BUILD)
target sources(bl2

)

target sources(platform bl2

)

endiék;

10 © 2022 Arm q r m

Details
Changes to platform (cont’d)

-~ Individual platform dedicated CMake files

- Alternative: split SPE/NSPE/BL2 builds as well
-+ More clean but more complex

-+ Update file paths as well

bl2/platform/CMakeLists. txt target platform’splatform bl2.cmake

add library(platform bl2 STATIC)

target sources(bl2
BL2 build

\ 4

\ 4

target sources(platform bl2 target sources(platform bl2

tf-m-spe/platform/CMakeLists. txt target platform’splatform_s.cmake

add library(platform s STATIC) target sources(tfm s

TF-M-SPE buil

\ 4

target sources (platform s

target sources(platform s

tf-m-tests/app/platform/CMakelLists. txt target platform’s platform ns.cmake

add library(platform ns STATIC)

target sources(tfm ns
NSPE build

A\ 4

A\ 4

target sources (platform ns target sources(platform ns

11 © 2022 Arm

arm

Details

-- Install and image generation process
« NSPE is built with files exported by TF-M SPE build
- Secure image and non-secure image are generated during SPE build and NSPE build respectively
- NS and S images are combined by NSPE build if BL2 is enabled

|
install L . |

|
BL2 build mage signing ‘SC”PtS ______________________ | |
and materials I
|
|

[

I

— Secure binaries = = = = = = = = I

install . I
I

I

I

I

— Export files

NSPE build — NS binaries ——» Combined image ~

. -

A 4

Build sequence

12 © 2022 Arm a r m

Details

-- Users won’t be aware of changes while building TF-M
 Build commands are kept the same
- Configurations are unchanged

- Except build output logs

+(Imoo) easier for debugging
= Logs are not mixed anymore
= Builds terminate immediately after the fatal error occurs
-+ However, configuration messages might be duplicated
= Shall be sorted and simplified further

13 © 2022 Arm q r m

Current status

-- A PoC under review

- Patch set
-+ trusted-firmware-m patch set
-+ tf-m-tests patch set

- Most major features are tested. All platforms are built successfully.
- It will be rebased (reworked) after other restructure patches are merged. Implementation details

might be changed then.
« Comments are welcome!

14 © 2022 Arm q r m

https://review.trustedfirmware.org/q/topic:%22split-build%22+(status:open)
https://review.trustedfirmware.org/q/topic:%22test-split-build%22+(status:open)

Further improvements

- More flexible configuration settings passed among modules
- Decouple image signing and assemble from TF-M SPE and NSPE build

- Perhaps further separation of TF-M repos

15 © 2022 Arm q r m

arm

© 2022 Arm

Thank You
DERLG
Gracias
Grazie
1515y
HYMES
Asante
Merci

LA LT

Ygdiq
Kiitos
8
SRIEIG
NTIN

