
© 2022 Arm

Arm Limited

August 18, 2022

TF-M Library model
vs.
TF-M SFN model
Based on a quantitative approach

2 © 2022 Arm

Purpose

Compare TF-M Library model and SFN model implementation based on some
quantitative data
• Memory footprint
• Performance
• Development/management effort

Implementation details/functionalities are not the focus
• Refer to FF-M 1.1 extension Appendix C for detailed analysis on these existing frameworks

https://developer.arm.com/documentation/aes0039/latest

3 © 2022 Arm

TF-M Library model

A TF-M specific lightweight framework implementation
• Secure Processing Environment (SPE) as a secure library

Based around a set of secure service functions
Those functions run as callbacks from Secure Partition Manager (SPM)
Each secure service function exports its corresponding veneer function

• Use cases
Isolation level 1
Highly resource-constrained devices
Single Armv8-M TrustZone scenario

psa_xxx() xxx_req_veneer() xxx_req()

psa_yyy() yyy_req_veneer() yyy_req()

RoT service xxx

RoT service yyy
SPM

Client

Client

4 © 2022 Arm

Secure Function (SFN) Model

A new framework defined in FF-M 1.1 extensions
• A simpler programming model compared to IPC model

Reuse RoT service secure function call concept from TF-M Library model and integrate this into FF-M
▪ RoT services are implemented as Secure Functions (SFN) that are called by the framework when the client makes a

request to the service

Identical PSA Client APIs with IPC model
Reduce framework overhead for systems that do not require high levels of isolation

• Use cases
Isolation level 1
Highly resource-constrained devices

psa_xxx()

PSA Client API

xxx_sfn()

psa_yyy() yyy_sfn()

RoT service xxx

RoT service yyySPM

Client

Client

5 © 2022 Arm

Library model vs. SFN model

Memory footprint
• Similar flash consumption

Code + RO data + RW data

• SFN model consumes less RAM than Library model does
RW data + ZI data

49456

50052
1.2%▲

Library model SFN model

Flash consumption (bytes)

20016
15644

-21.8%▼

Library model SFN model

RAM consumption (bytes)

* Test config: Profile Small, Armclang 6.18, AN521, MinSizeRel build type

6 © 2022 Arm

Library model vs. SFN model

SFN model costs longer in client calls than Library model does
• Additional operations required by FF-M

Client permission verification
RoT service version validation
Input parameter overlapping checks to avoid double-fetch inconsistency
Message construction and parse
RoT service invokes psa_read() to read input parameters

13100
14500 15200

17500
15400 16500

psa_hash_setup() psa_its_set() psa_its_get()

NS client request approx. execution time
(CPU cycles)

Library model SFN model

8500 8600 9300

15300
13600 14700

psa_hash_setup() psa_its_set() psa_its_get()

Secure client request approx. execution time
(CPU cycles)

Library model SFN model

*TF-M Profiler tool
*Test config: Profile Small, GNU Arm, Musca-S1, Debug build type

https://git.trustedfirmware.org/TF-M/tf-m-tools.git/tree/profiler

7 © 2022 Arm

ITS Secure Partition

Library model vs. SFN model

SFN model costs longer in client calls than Library model does (cont’d)
• TF-M specific implementation of SFN model

SFN models shares some common routines with IPC model to simplify implementation/maintenance
▪ Such as dynamic handle/message instance allocation
▪ Can be optimized further if required

Entry functions for TF-M stateless RoT services
▪ TF-M Secure Partition implement an entry function to dispatch stateless RoT service callbacks
▪ Reduce consumption of stateless handles to reserve indexes for 3rd-party RoT service usage
▪ 3rd-party RoT services can export RoT service callbacks directly without an entry function

psa_status_t its_service_sfn(const psa_msg_t *msg)
{

switch (msg->type) {
case TFM_ITS_SET:

return tfm_its_set_req(msg);
case TFM_ITS_GET:

return tfm_its_get_req(msg);
…
}

…
}

psa_its_set() tfm_its_set_req()

psa_its_get() tfm_its_get_req()

Client

Client

its_service_sfn()

Stateless handle 1

Stateless handle 2

Stateless handle 1

Message->type

Message->type

8 © 2022 Arm

Library model vs. SFN model

Development/Maintenance effort
• How many conditional checks/branches are maintained for Library mode/SFN model?

Each one wraps Library/SFN model specific implementation in shared routines with IPC model
▪ Changes of Library/SFN may impact IPC model, and vice versa
▪ “Bidirectional” development/maintenance effort with IPC model

Library model: TFM_PSA_API/TFM_LIB_MODEL
▪ Dedicated standalone SPM/HAL implementation

SFN model: CONFIG_TFM_PSA_API_SFN_CALL/CONFIG_TFM_SPM_BACKEND_SFN
▪ Share common routines/implementation with IPC model

Library model SFN model

C code 114 9

Linker scripts 17 0

Build system

(including manifest tool)
74 11

Total 215 20

#ifndef TFM_PSA_API
$<$<BOOL:${TFM_PSA_API}>>:…>

#elif CONFIG_TFM_PSA_API_SFN_CALL == 1
$<$<BOOL:${CONFIG_TFM_SPM_BACKEND_SFN}>:…>

9 © 2022 Arm

Library model vs. SFN model

Observations
• Similar memory footprint
• SFN model is “slower” due to more execution steps compliant with FF-M
• Less development/maintenance effort for SFN model, with essential IPC model

© 2022 Arm

Thank You
Danke

Gracias
Grazie
谢谢

ありがとう
Asante
Merci

감사합니다
धन्यवाद

Kiitos
شكرًا

ধন্যবাদ
תודה

