
Power Management Service
Reaching low and high power states in TF-M

Frank Audun Kvamtrø

September 2025



© Nordic Semiconductor

Rationale for this service

▪ Power management needs to be handled in the Root of Trust

▪ A well-defined service is much better than using e.g. IOCTL for a fully vendor-customized solution

 

Intent

▪ Add support standardized low-power modes

▪ Suspend, Hibernate and System Off - all optional to implement

▪ Allow for device-specific power modes

▪ Extendible on vendor level

▪ Provide integration points to ease development and adoption

▪ Matched with relevant documentation, possibly including reference-kit implementation

▪ Provide a service that is certifiable

Introduction

2



© Nordic Semiconductor

▪ Enum-based signals to set power modes

▪ Vendor range for extensions

▪ Base + index

Reusing error-codes from platform layer

▪ TFM_PLATFORM_ERR_SUCCESS

▪ Mode change successful - or no signal if the power mode stalls the device

▪ TFM_PLATFORM_ERR_SYSTEM_ERROR

▪ Internal hardware error

▪ TFM_PLATFORM_ERR_NOT_SUPPORTED

▪ Mode not enabled/supported

Option: Adding new error-code:

▪ TFM_PLATFORM_ERR_BUSY – Mode change deferred

▪ It is the assumption that the easiest way to track whether a power mode change can happen is by e.g. 

storing a generic “busy state”. This limits the need to give the Power Management Service knowledge 

about the rest of the system.

Service API – Platform level

3



© Nordic Semiconductor

▪ Differentiated APIs for Suspend, Hibernate, and System Off power 

modes

▪ Suspend + Resume

▪ Hibernate + Awake

▪ System off has matching wakeup API, use regular reset..

▪ Optional: Custom function for vendor-specific power modes

▪ It is assumed that the vendor handles going to a “higher” power level 

e.g. with the same service API

▪ No assumption on change to overall service of the device when any 

vendor specific power mode is reached

▪ Optional: API to handle all power modes at HAL level

▪ Could be handled on service level instead…

HAL Level

4



© Nordic Semiconductor

▪ Manage power mode with simple information exchange

▪ Ensuring service API can be stable and generic

▪ HAL level entry-points hides implementation details

▪ No special handling of reserved memory, peripheral usage and/or understanding of chips/cores in service

▪ Vendor can extend with additional power modes according to their needs

▪ Separation of concern between NSPE and SPE by not transferring data

▪ Current design: No wakeup signal emitted on service level

Open question:

▪ For simplification, the platform and HAL abstraction layer is somewhat "mixed"

▪ Would this be acceptable or do we require service to HAL conversions for error-codes, modes, and configurations?

Controlling scope – At least in the beginning...

5



© Nordic Semiconductor

▪ PR raised with System Off example on nRF device

▪ Follow up either in PR or in mailing list

▪ Discussing acceptance and timeline for official support…

Next steps

6


	Slide 1: Power Management Service
	Slide 2: Introduction
	Slide 3: Service API – Platform level
	Slide 4: HAL Level
	Slide 5: Controlling scope – At least in the beginning...
	Slide 6: Next steps

