Power Management Service

Reaching low and high power states in TF-M

Frank Audun Kvamtrg

September 2025




\
Nordic Semiconductor

Introduction

Rationale for this service
= Power management needs to be handled in the Root of Trust

= A well-defined service is much better than using e.g. IOCTL for a fully vendor-customized solution

Intent

= Add support standardized low-power modes

= Suspend, Hibernate and System Off - all optional to implement

= Allow for device-specific power modes

= Extendible on vendor level

= Provide integration points to ease development and adoption

= Matched with relevant documentation, possibly including reference-kit implementation

= Provide a service that is certifiable



\
© Nordic Semiconductor

Service API — Platform level

= Enum-based signals to set power modes

" Vendor range for extensions enum tfm_platform_ha
. Base + index TFM_PLATFORM_POWER_
TFM_PLATFORM_POWER_MODE_SUSPEND,
Reusing error-codes from platform layer TFM_PLATFORM_POWER_MODE_HIBERNATE,
TFM_PLATFORM_POWER_MODE_SYSTEM_OFF,

= TFM_PLATFORM_ERR_SUCCESS

. Mode change successful - or no signal if the power mode stalls the device
TFM_PLATFORM_POWER_MODE_VENDOR_BASE
= TFM_PLATFORM_ERR_SYSTEM_ERROR

. Internal hardware error

= TFM_PLATFORM_ERR_NOT_SUPPORTED

. Mode notenabled/supported enum tfm_plat

enum tfm oxrm_error_t tfm_platform_hal_|

Option: Adding new error-code:

= TFM_PLATFORM_ERR_BUSY — Mode change deferred

. Itis the assumption that the easiest way to track whether a power mode change can happen is by e.g.
storing a generic “busy state”. This limits the need to give the Power Management Service knowledge

about the rest of the system.



\
© Nordic Semiconductor

HAL Level

tfm_platform_err_t tfm_hal_system_suspend(void) {

= Differentiated APIs for Suspend, Hibernate, and System Off power
modes

tfm_platform_err_t tfm_hal_system_resume(void) {

= Suspend + Resume

= Hibernate + Awake

tfm_platform_err_t tfm_hal_system_hibernate(void) {
= System off has matching wakeup API, use regular reset..

7

n Optional: Custom function for ven dOI‘-SpecifiC power mOdeS tfm_platform_err_t tfm_hal_system_awake(void) {

= Itis assumed that the vendor handles going to a “higher” power level

e g Wlth the same Service APl tfm_platform_err_t tfm_hal_system_off(void) {

= No assumption on change to overall service of the device when any

tfm_platform_err_t tfm_hal_system_vendor_power_mo da_set\(

vendor specific power mode is reached

enum tfm_platform de_t mode) {

= Qptional: APl to handle all power modes at HAL level

L] Could be handled on service level instead... tfm_platform_err_t tfm_hal_system_powe
enum tfm_platfo ower de_t mode) A




\
Nordic Semiconductor

Controlling scope — At least in the beginning...

= Manage power mode with simple information exchange

= Ensuring service APl can be stable and generic
=  HAL level entry-points hides implementation details
= No special handling of reserved memory, peripheral usage and/or understanding of chips/cores in service
= Vendor can extend with additional power modes according to their needs

= Separation of concern between NSPE and SPE by not transferring data

= Current design: No wakeup signal emitted on service level

Open question:

=  For simplification, the platform and HAL abstraction layer is somewhat "mixed"

= Would this be acceptable or do we require service to HAL conversions for error-codes, modes, and configurations?



\
Nordic Semiconductor

Next steps

= PR raised with System Off example on nRF device

= Follow up either in PR or in mailing list

= Discussing acceptance and timeline for official support...



	Slide 1: Power Management Service
	Slide 2: Introduction
	Slide 3: Service API – Platform level
	Slide 4: HAL Level
	Slide 5: Controlling scope – At least in the beginning...
	Slide 6: Next steps

