
© 2021 Arm Limited

John Powell
October 21, 2021

Granule Protection
Tables in TF-A

2 © 2021 Arm Limited

What are Granule Protection Tables?

• ARMv9 introduces two additional
security states for a total of four:
root and realm, in addition to
secure and non-secure. (FEAT_RME)

• These additional security states and
their intended use cases require a
new way to control memory access.

• Granule protection tables define the
ranges of physical memory that
each security state can access.

Security State

Root Realm Secure Non-secure

GPI_ROOT yes no no no

GPI_REALM yes yes no no

GPI_SECURE yes no yes no

GPI_NS yes no no yes

GPI_ANY yes yes yes yes

GPI_NO_ACCESS no no no no

3 © 2021 Arm Limited

What are Granule Protection Tables?

• Memory regions are tagged with
one of six GPI values. (granule
protection information)

• The table to the right shows the
four security states and what GPIs
they have access to.

• Granule protection checks trigger an
exception when a program attempts
to access memory outside of what is
permitted by its security state.

Security State

Root Realm Secure Non-secure

GPI_ROOT yes no no no

GPI_REALM yes yes no no

GPI_SECURE yes no yes no

GPI_NS yes no no yes

GPI_ANY yes yes yes yes

GPI_NO_ACCESS no no no no

4 © 2021 Arm Limited

How do Granule Protection Tables work?

• Granule protection tables can use
either a one or two stage lookup
process using level 0 and level 1
tables.

• Each L0 table entry controls a large,
fixed amount of memory.

• An L0 entry can either map its entire
space with a single GPI (block
descriptor) or point to an L1 table
controlling individual granules (table
descriptor).

0x0

Memory

0x4

0x8

0xC

0xF

[0] Block Desc

[1] Table Desc

[2] Block Desc

[3] Table Desc

L0 Table

L1 Table

L1 Table

5 © 2021 Arm Limited

How do Granule Protection Tables work?

• Block descriptors use a single stage
lookup using only the L0 table entry.
• GPI is fixed and cannot be changed

after initialization.

• Table descriptors use a two-stage
lookup using both the L0 table and
an L1 table.
• GPI can be changed at runtime using

SMC calls.

• Granules are relatively small and
allow for much finer control of
memory.

0x0

Memory

0x4

0x8

0xC

0xF

[0] Block Desc

L1 Table

[1] Table Desc

[2] Block Desc

[3] Table Desc

L0 Table

L1 Table

6 © 2021 Arm Limited

Granule Protection Table Configuration

• Three main parameters define how the tables and regions are organized.

• Protected Physical Address Size (PPS)
• This parameter defines the size of the protected address space starting from 0x0.
• Supported sizes are 4GB, 64GB, 1TB, 4TB, 16TB, 256TB, and 4PB.

• Physical Granule Size (PGS)
• This defines the size of each granule.
• Supported sizes are 4KB, 16KB, and 64KB.

• Level 0 GPT Size (L0GPTSZ)
• This parameter determines how large each level 0 region is. This value is determined

by hardware and is read from GPCCR_EL3 during table initialization.
• Supported sizes are 1GB, 16GB, 64GB, and 512GB.

7 © 2021 Arm Limited

A Simple Example
• PPS = 16 bytes

• PGS = 1 byte

• L0GPTSZ = 4 bytes

• Let’s access PA 0xD
(0b1101)

• L0 table is indexed using
bits [3,2] of the physical
address, so index = 0b11.

• L0[3] is a table descriptor,
so get the address of the
L1 table from it then use
bit[1] of the PA to get the
index of the L1 descriptor.

• Use bit[0] to get the index
of the GPI within the
descriptor.

0x0

Memory

0x4

0x8

0xC

0xD

0xF

[0] Block Desc

[0] Gran Desc

[1] Table Desc

[2] Block Desc

[3] Table Desc

L0 Table

L0 Regions

Granules

Granules

[1] Gran Desc

L1 Table

[0] Gran Desc

[1] Gran Desc

L1 Table

7 4 3 1
GPI[1] GPI[0]

Sample Granule Desc Format

8 © 2021 Arm Limited

GPT Initialization in TF-A

• The MMU is enabled first, this simplifies cache management.

• All L0 entries are initialized as block descriptors allowing ANY access.
• The L0 table is placed in SRAM to provide the best security.
• gpt_init_l0_tables() is called in BL2 prior to system memory discovery.
• PPS is set here, along with the level 0 table base address.

• Protected regions are then “carved out” of this space.
• L1 tables are typically placed in DDR in a region with GPI_ROOT.
• gpt_init_pas_l1_tables() is called in BL2 after system memory is discovered.
• These regions can be either block or table (granule) descriptors.
• PGS is set here, along with setting the base address for L1 tables.
• This function can be called multiple times if placing the level 1 tables in different

locations is desirable, such as separate banks of DDR having their own L1 tables.

9 © 2021 Arm Limited

GPT Initialization in TF-A

• Once the tables have been created, granule protection checks are enabled.
• gpt_enable() is the final step of BL2 GPT initialization.

• Runtime firmware discovers the tables using register values programmed
during initialization so the granule transition service knows where to look.
• gpt_runtime_init() is called in BL31.
• Level 0 tables are located along with the L0GPTSZ, PPS, and PGS parameters.

• For warm boots, BL31 simply calls gpt_enable() after enabling the MMU.

power on

enter BL2

enable MMU

gpt_init_pas_l1_tables()gpt_init_l0_tables()

gpt_runtime_init()

enter BL31

gpt_enable()

boot continues

memory discovery

10 © 2021 Arm Limited

Granule Transition Service

• Realm and secure software can request that granules be transitioned
between security states using SMC calls.
• Secure software can request NS -> S transitions, and S -> NS transitions.
• Realm software can request NS -> R, and R->NS transitions.

• When a transition request is received, runtime firmware walks the tables to
find the requested granule, validates the request, then performs the
transition.

• If the granule transition service is not needed, runtime firmware does not
need to discover the tables

• Non-secure and root firmware cannot request granule transitions.

11 © 2021 Arm Limited

Future Enhancements

• Allow a range of granule-aligned memory to be transitioned at once
instead of just single granules.

• The granule transition service currently relies on a single global lock to
control access to the L1 table, performance could be improved by having
multiple locks across separate L1 tables or even L1 descriptors.

• Add support for contiguous descriptors.

© 2021 Arm Limited

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद

شكرًا
ধন্যবাদ
תודה

The Arm trademarks featured in this presentation are registered
trademarks or trademarks of Arm Limited (or its subsidiaries) in

the US and/or elsewhere. All rights reserved. All other marks
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2021 Arm Limited

