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What are Granule Protection Tables?

• ARMv9 introduces two additional 
security states for a total of four: 
root and realm, in addition to 
secure and non-secure. (FEAT_RME)

• These additional security states and 
their intended use cases require a 
new way to control memory access.

• Granule protection tables define the 
ranges of physical memory that 
each security state can access.

Security State

Root Realm Secure Non-secure

GPI_ROOT yes no no no

GPI_REALM yes yes no no

GPI_SECURE yes no yes no

GPI_NS yes no no yes

GPI_ANY yes yes yes yes

GPI_NO_ACCESS no no no no
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What are Granule Protection Tables?

• Memory regions are tagged with 
one of six GPI values. (granule 
protection information)

• The table to the right shows the 
four security states and what GPIs 
they have access to.

• Granule protection checks trigger an 
exception when a program attempts 
to access memory outside of what is 
permitted by its security state.

Security State

Root Realm Secure Non-secure

GPI_ROOT yes no no no

GPI_REALM yes yes no no

GPI_SECURE yes no yes no

GPI_NS yes no no yes

GPI_ANY yes yes yes yes

GPI_NO_ACCESS no no no no
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How do Granule Protection Tables work?

• Granule protection tables can use 
either a one or two stage lookup 
process using level 0 and level 1 
tables.

• Each L0 table entry controls a large, 
fixed amount of memory.

• An L0 entry can either map its entire 
space with a single GPI (block 
descriptor) or point to an L1 table 
controlling individual granules (table 
descriptor).
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How do Granule Protection Tables work?

• Block descriptors use a single stage 
lookup using only the L0 table entry.
• GPI is fixed and cannot be changed 

after initialization.

• Table descriptors use a two-stage 
lookup using both the L0 table and 
an L1 table.
• GPI can be changed at runtime using 

SMC calls.

• Granules are relatively small and 
allow for much finer control of 
memory.
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Granule Protection Table Configuration

• Three main parameters define how the tables and regions are organized.

• Protected Physical Address Size (PPS)
• This parameter defines the size of the protected address space starting from 0x0.
• Supported sizes are 4GB, 64GB, 1TB, 4TB, 16TB, 256TB, and 4PB.

• Physical Granule Size (PGS)
• This defines the size of each granule.
• Supported sizes are 4KB, 16KB, and 64KB.

• Level 0 GPT Size (L0GPTSZ)
• This parameter determines how large each level 0 region is. This value is determined

by hardware and is read from GPCCR_EL3 during table initialization.
• Supported sizes are 1GB, 16GB, 64GB, and 512GB.
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A Simple Example
• PPS = 16 bytes

• PGS = 1 byte

• L0GPTSZ = 4 bytes

• Let’s access PA 0xD 
(0b1101)

• L0 table is indexed using
bits [3,2] of the physical 
address, so index = 0b11.

• L0[3] is a table descriptor, 
so get the address of the 
L1 table from it then use 
bit[1] of the PA to get the 
index of the L1 descriptor.

• Use bit[0] to get the index
of the GPI within the 
descriptor.
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GPT Initialization in TF-A

• The MMU is enabled first, this simplifies cache management.

• All L0 entries are initialized as block descriptors allowing ANY access.
• The L0 table is placed in SRAM to provide the best security.
• gpt_init_l0_tables() is called in BL2 prior to system memory discovery.
• PPS is set here, along with the level 0 table base address.

• Protected regions are then “carved out” of this space.
• L1 tables are typically placed in DDR in a region with GPI_ROOT.
• gpt_init_pas_l1_tables() is called in BL2 after system memory is discovered.
• These regions can be either block or table (granule) descriptors.
• PGS is set here, along with setting the base address for L1 tables.
• This function can be called multiple times if placing the level 1 tables in different 

locations is desirable, such as separate banks of DDR having their own L1 tables.
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GPT Initialization in TF-A

• Once the tables have been created, granule protection checks are enabled.
• gpt_enable() is the final step of BL2 GPT initialization.

• Runtime firmware discovers the tables using register values programmed 
during initialization so the granule transition service knows where to look.
• gpt_runtime_init() is called in BL31.
• Level 0 tables are located along with the L0GPTSZ, PPS, and PGS parameters.

• For warm boots, BL31 simply calls gpt_enable() after enabling the MMU.

power on 

enter BL2

enable MMU

gpt_init_pas_l1_tables()gpt_init_l0_tables()

gpt_runtime_init()

enter BL31

gpt_enable()

boot continues

memory discovery
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Granule Transition Service

• Realm and secure software can request that granules be transitioned 
between security states using SMC calls.
• Secure software can request NS -> S transitions, and S -> NS transitions.
• Realm software can request NS -> R, and R->NS transitions.

• When a transition request is received, runtime firmware walks the tables to 
find the requested granule, validates the request, then performs the 
transition.

• If the granule transition service is not needed, runtime firmware does not
need to discover the tables

• Non-secure and root firmware cannot request granule transitions.
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Future Enhancements

• Allow a range of granule-aligned memory to be transitioned at once 
instead of just single granules.

• The granule transition service currently relies on a single global lock to 
control access to the L1 table, performance could be improved by having 
multiple locks across separate L1 tables or even L1 descriptors.

• Add support for contiguous descriptors.
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