
Confidential © 2020 Arm Limited

Gary Morrison and Lauren Wehrmeister
1 July 2021

Adding v8-R64 Support 
to TF-A

TF-A Tech Forum



2 Confidential © 2020 Arm Limited

Agenda

What to do:

• What's v8-R64?

• v8-R64 architecture differences

• No-EL3

• MPU vs. MMU

• Secure-Mode Only

• No AArch32 support

• Why add v8-R64 support to v8-A 
firmware?

How to do it:

• The immediate assignment

• No-EL3 ramifications

• MPU ramifications

• No non-secure ramifications

• Loading runtime system and 
transfer of control

• Porting approach

• Review approach



Confidential © 2020 Arm Limited

Armv8-R AArch64 
Architecture ("v8-R64")



4 Confidential © 2020 Arm Limited

What's v8-R64?

• Next generation of R-Class family: AArch64. Cortex-R82 is first implementation.

• R-Class cores are especially targeted toward deterministic performance (e.g., avoiding 
the unpredictable timing of table walks).

• Markets that have shown interest include Automotive and Computational Storage.

• The R-Class community is excited for all the reasons you'd expect:

• Vastly-increased address space

• Much-higher performance

• v8-R64 can support rich-OSes in addition to comparatively-spartan RTOSes.

• More information available here: https://developer.arm.com/ip-
products/processors/cortex-r/cortex-r82

l

https://developer.arm.com/ip-products/processors/cortex-r/cortex-r82


5 Confidential © 2020 Arm Limited

v8-R64 Architecture Differences
Most basic differences compared to A-Class cores:

• No EL3.

• Everything is 
Secure.

• For Stage-
2 translation, MPU 
only.

• For Stage-
1 translation, MMU 
or MPU.

• No AArch32 
support.

l



6 Confidential © 2020 Arm Limited

v8-R64 Architecture Differences
l



7 Confidential © 2020 Arm Limited

v8-R64 Architecture Differences – MPU

v8-A

g



8 Confidential © 2020 Arm Limited

v8-R64 Architecture Differences – MPU

v8-R64

g

(Stage 2 MPU)



Confidential © 2020 Arm Limited

The Assignment



10 Confidential © 2020 Arm Limited

Why Add v8-R64 Support to v8-A Firmware?

• v8-A and v8-R64 are far more similar than different.

• Most of the trusted-firmware code for v8-A is useful for v8-R64 as well.

• If a separate trusted-firmware project were created for v8-R64, we would have a huge 
parallel-maintenance headache.

• SystemReady IR certification for v8-R64 cores requires compliance with EBBR, and 
building from the TF-A framework puts us on the path toward that goal.

Perhaps the best reason though, is that open-source software is all about pooling our 
efforts. Adding v8-R64 developers support would recruit even more review and 
development talent to Trusted Firmware!

g



11 Confidential © 2020 Arm Limited

The Immediate Assignment

• The immediate assignment was not to port all of TF-A to v8-R64.

• The immediate assignment was:

• To port BL1 only, to EL2 and MPU,

• to adapt BL1 authenticate, opaquely load, and transfer control to a 
Customer/Partner run-time system instead of BL2, and

• to support Recovery-mode FWU.

l



12 Confidential © 2020 Arm Limited

The Immediate Assignment
l



Confidential © 2020 Arm Limited

Ramifications of v8-R64 
Differences



14 Confidential © 2020 Arm Limited

No-EL3 Ramifications

• Although v8-R64 instruction set is essentially the same as v8-A, there are no EL3 System 
Registers.

• BL1 normally runs in EL3, but for v8-R64 cores it runs at EL2. We say BL1 runs in 
"ELmax".

• Ramifications: Any and every manipulation of EL3-specific resources is redirected 
to corresponding EL2-specific resources.

• In the majority of BL1-code accesses to EL3 System-Register bit fields, the same bit 
fields are the same for the corresponding EL2 register.

• el3_common_macros.S turned into el_max_common_macros.S, with the macros 
parameterized to which EL to act upon.

• EL2 BL1 loads BL33 (runtime environment), then transfer of control.

g



15 © 2020 Arm Limited (or its affil iates)

MPU Ramifications – MPU? Wuzzat?
• Memory-Protection Units are still said to "perform translations," 

but don't change addresses: PA = IPA = VA. Everything is strictly 
flat-, direct-mapped.

• MPUs only apply permissions to specified, contiguous 
address regions.

• Most importantly, they are register-based, making timing much 
more-deterministic (no table walks).

• Regions are specified by System Registers:
• PRBAR_ELn, Protection Region Base-Address Register
• PRLAR_ELn, Protection Region Limit Address Register, also 

specifies permissions (which MAIR)
• PRENR_ELn, Protection Region Enable Register (bitmap of which 

regions are enabled)

• Entirely register-based, so no non-deterministic-speed searching 
through page tables in memory.

Region 0

Read-only

Region 1

Read-Write

Higher Address

Lower Address

.

.

.

g



16 Confidential © 2020 Arm Limited

MPU Ramifications

• As mention earlier, v8-R64 instruction set matches v8-A, but the System Registers do 
have substantial differences, for MPU support.

• Clearly, the most obvious ramification of having an MPU is that we need to add code to 
"drive" the MPU.

• For the immediate, short-run assignment, we only need to support the EL2/Stage-
2 MPU, and not (yet) the EL1/0 Stage-1 MPU.

• MPUs also typically support far fewer regions than an MMU typically does.

• However, MPUs are more versatile in that they don't impose page-size granularity 
limitations.

• Overlapped MPU regions are not supported.

g



17 Confidential © 2020 Arm Limited

No Non-Secure Ramifications

• Having no EL3 to switch NS/Secure, v8-R64 mandates everything Secure mode.

• Arguably, making everything Secure makes nothing secure, or at least nothing 
any more secure than anything else.

• Still, this turns out to be lucky for TB-R purposes, because BL1 normally operates in 
Secure mode. The requested memory-translation permissions are already requested 
for Secure mode.

• Nevertheless, v8-R64 makes provisions for generating NS accesses from the Secure 
state:

• The MMU region descriptors also have an equivalent NS bit.

• We haven't seen need to use this feature, but it's available if at some point we do need it.

g



Confidential © 2020 Arm Limited

The Details



19 © 2020 Arm Limited (or its affil iates)

Loading Runtime System and Transfer of Control

• Load and Transfer from BL1 to BL33:
• In EL2, BL1 enables MPU and loads and authenticates the BL33 image, which for v8-R64 purposes is 

the customer/partner runtime system, or bootwrapped-OS.
• TBBR support is extended to fvp_r platform for BL1 for authentication.
• After turning off the MPU and clearing regions, then an ERET is used to jump to the base address of 

BL33 for execution directly from BL1.
• We used an internal bootwrapped-OS to test the transfer of control from BL1 to BL33 for a shell 

prompt on a UART as a sign of life.

• Transfer from BL1 to Recovery mode FWU:
• The transfer from BL1 to Recovery mode FWU remains the same as BL1 copies the image from 

external interfaces and updates if the image can be authenticated.

ll

BL1 
enables 

MPU

BL1 loads 
BL33 

image

BL1 auth 
BL33 

image

BL1 turns 
off MPU 

and clears

ERET to 
BL33

BL33 
shows 

sign of life



20 © 2021 Arm

TB-R Memory Map change requirements

• For addresses in the 0-0xffffffff range, the v8-R64 memory map is similar with v8-A, but 
the upper 2GB and lower 2GB are switched.

• In other words, bit 31 is reversed, so, for example, DRAM1 is at address 0 rather than 
address 0x80000000.

• See https://developer.arm.com/documentation/100964/1113/Base-Platform/Base---memory/Base-
Platform-memory-map

and https://developer.arm.com/documentation/100964/1113/Base-Platform/Base---memory/BaseR-
Platform-memory-map

• The reasons are explained in the above documents, but for now, just FYI, the addresses 
are different from most other platforms.

l

https://developer.arm.com/documentation/100964/1113/Base-Platform/Base---memory/Base-Platform-memory-map
https://developer.arm.com/documentation/100964/1113/Base-Platform/Base---memory/BaseR-Platform-memory-map


21 Confidential © 2020 Arm Limited

Porting Approach

• Created a new .../trusted-firmware-a/lib/xlat_mpu library:
• API is similar, where applicable.
• For example, to program regions, you still set up a terminated array of mmap_region_t-type 
structs, and call setup_page_tables() to create those regions. mmap_add_region() still creates.

• Enable calls, however, named enable_mpu_*() rather than enable_mmu_*(). Same for disable_*().

• #define NO_EL3 (probably change to BL1_AT_EL2) to divert EL3-resource accesses to EL2.

• Created the fvp_r platform, patterned after Cortex R-82, that was ported to and tested 
on the v8-R64 FVP.

• BL1 image that stays in EL2 using MPU, loads the BL33 image, wipes MPU regions, and 
then jumps to the BL33 image.

• For our testing purposes we used an internal OS to test the transfer of control from BL1 
to BL33.



22 Confidential © 2020 Arm Limited

Review Approach

• Gerrit reviews:

• https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10512 Platform definition
• https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10518 No-EL3 and MPU
• https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10519 Validate and load system
• https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10520 Documentation

• As with most new platforms, this is a rather large change, and it can't really be broken 
down much into smaller, stand-alone patches, and still compile.

• We hope to create a Phabricator site to help review new files:
• Most of the "new" files are not really new, but derived from existing files.
• The Gerrit review, however, has no way of knowing which existing files to compare them to.
• If successful, we'll create a table listing each new file, which of the above patches it was created 

under, plus an sdiff output against a close-relative existing/familiar file.

https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10512
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10518
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10519
https://review.trustedfirmware.org/c/TF-A/trusted-firmware-a/+/10520


23 Confidential © 2020 Arm Limited

Resources

• https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r82

• https://www.arm.com/company/news/2020/09/highest-performance-arm-cortex-r-
processor

• https://community.arm.com/developer/tools-software/oss-
platforms/w/docs/626/armv8-r-aarch64

https://www.arm.com/products/silicon-ip-cpu/cortex-r/cortex-r82
https://www.arm.com/company/news/2020/09/highest-performance-arm-cortex-r-processor
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/626/armv8-r-aarch64


The Arm trademarks featured in this presentation are registered 
trademarks or trademarks of Arm Limited (or its subsidiaries) in 

the US and/or elsewhere. All rights reserved. All other marks 
featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

Confidential © 2020 Arm Limited



Confidential © 2020 Arm Limited

Thank You
Danke
Merci
谢谢

ありがとう
Gracias

Kiitos
감사합니다

धन्यवाद
شكرًا

ধন্যবাদ
תודה


